• Title/Summary/Keyword: cooling COP

Search Result 368, Processing Time 0.027 seconds

Comparative Analysis of Energy Performance of Hydrothermal, Geothermal Source and Hybrid Heat Pump System According to Internal Heat Load for Office, School and Smart Farm (건축물 용도별 내부 발열부하에 따른 수열원, 지열원 및 하이브리드 히트펌프 시스템의 에너지 성능 비교 분석)

  • Park, Sihun;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.19-30
    • /
    • 2022
  • In this study, comparative analysis of energy performance in Taebaek city, a test area, by applying hydrothermal, geothermal source and hybrid heat pump system to office, school and smart farms with different internal heat loads. The conclusion is as follows. In the load characteristics by use of buildings, it was found that office had a large cooling load compared to heating load, school had a large heating load compared to cooling load, and smart farm had only cooling load year-round. Performance analysis of the heat pump system in office shows that the cooling COP of the hydrothermal source is 5.12% and the heating COP is 3.22% lower based on the geothermal source, the cooling COP of the hybrid is 0.41% higher, and the heating COP is the difference in performance appeared sparsely. The performance analysis of the heat pump system in school showed that the cooling COP of the hydrothermal source was 10.44% and the heating COP 3.22% lower based on the geothermal source, and the performance difference between the hybrid cooling and heating COP was insignificant. Heat pump system performance analysis in smart farm only occurred with cooling load. Based on geothermal sources, the cooling COP of the hydrothermal source was 46% and the cooling COP of the hybrid was 19.65%, respectively.

An Experimental Study of Adsorption Chiller using Silica gel-Water (실리카겔-물계 흡착식 냉동기에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Joung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF

Experimental Study on Cooling Characteristics of Multi - Air Conditioner using Inverter Scroll Compressor (인버터 스크롤 압축기를 사용한 멀티 에어컨의 냉방 특성에 대한 실험적 연구)

  • 권영철;고국원;진의선;허삼행;전용호;이영덕;박인규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 2004
  • In the present study, the cooling characteristics of the multi-air conditioner (A/C) using an inverter scroll compressor are experimentally investigated for the number of the indoor units and the operating conditions (2$0^{\circ}C$, 24$^{\circ}C$, 26$^{\circ}C$) under the cooling standard conditions by KS C 9306. In the case of the simultaneous operation for 3 indoor units, the cooling capacity, the mass flow rate and the input power have a decreasing trend and COP has an increasing trend, with decreasing the difference in the operating temperature of the indoor unit and the room temperature. In the case of the simultaneous operation for 2 indoor units, the COP of the indoor unit with large cooling capacity is high when the operating temperature is high, but the COP of the indoor unit with low cooling capacity is high when the operating temperature is low. In the case of the single operation for one unit, when the large cooling capacity of the indoor unit is less than 50% the compressor operates at the minimum operation frequency region and the COP decreases.

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.

Basic Design and Performance Analysis of an Solar Absorption Chiller (태양열 구동 흡수식 냉동기의 기본설계 및 성능분석)

  • Baek, N.C.;Yoon, E.S.;Joo, M.C.;Jeong, S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.107-112
    • /
    • 1998
  • Basic design of a solar driven absorption cooling machine(SDACM) with a cooling capacity of 5 USRT was carried out. The SDACM is a single effect cycle driven by low temperature hot water from solar collectors. The SDACM design data were calculated by the steady state simulation program which was developed in this study The variation of COP and cooling capacity of the SDACM were investigated at different off-design conditions. Both the cooling capacity and the system COP were improved with decreasing cooling water temperature. If hot water temperature was increased, the cooling capacity was improved but the system COP was found to be decreased. The decrease of the system COP were basically caused by increased thermal loads in the system components.

  • PDF

An Experimental Study on the Effects of Operating Variables on the Cooling and Heating Performance of Geothermal Heat Pump (지열 히트펌프에서 운전변수가 냉난방 성능에 미치는 영향에 대한 실험연구)

  • Chang, Keun-Sun;Kang, Hee-Jeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.562-570
    • /
    • 2011
  • In this research, an experimental study is performed to investigate the effects of system operating variables on the cooling and heating characteristics of heat pump system using geothermal heat source and carbon dioxide as a refrigerant. System variables analyzed include compressor frequency, electronic expansion valve opening, refrigerant charge, secondary fluid temperature and flow rate. Results show that optimum refrigerant charge and electronic expansion valve opening position exist at the maximum point of COP curve, and both cooling and heating capacity increase but COPs decrease with the increase of compressor frequency. The change of a secondary fluid temperature leads to variation of overheat area and enthalpy difference in the evaporator and gas cooler. which again results in considerable variations of cooling and heating capacity and COP. In the case of effects of secondary water fluid flow rate, both cooling capacity and COP increase with the increase of secondary flow in evaporator or gas cooler, whereas heating capacity and COP decrease with the increase of flow rate in gas cooler.

Performance Analysis of Water-to-Air Heat Pump System under Water Temperature and Load Ratio (열원 및 부하조건에 따른 물-공기 히트펌프 시스템의 성능분석)

  • Cho, Yong;Lee, Dong Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.194.2-194.2
    • /
    • 2011
  • Heating and cooling performance has been analyzed for the water-source heat pump system using raw water from Daechung reservoir. During heating operation from March to May, water temperature is not good condition for a heat source due to the higher atmospheric temperature. Avearged heating load ratio is only 14.3%, and the averaged unit COP and system COP are estimated to be 2.46 and 2.15 respectively. The COP is affected considerably by the water temperature, and the unit COP is increased from 2.16 at $5^{\circ}C$ to 2.95 at $11^{\circ}C$. Cooling performance is analyzed with the measured data from June to August. During cooling operation, raw water has lower temperature by 4. $5^{\circ}C{\sim}4.7^{\circ}C$ than the atmosphere. The load ratio is 39.2%, and the averaged unit COP and system COP are estimated to be 7.25 and 6.13 respectively. The heating COP is affected by the load ratio rather than water temperature. The COP is increased for 20%~40% load ratio, while is decreased for 40%~60% load ratio. It is estimated that the compressor operation combination for 3 (two constant speed and one inverter) compressors is changed for the load ratio.

  • PDF

Analysis on Cooling and Heating Performance of Water-to-Water Heat Pump System for Water Source Temperature (물-물 수온차 히트펌프 시스템의 원수온도에 따른 성능 특성 분석)

  • Park, Tae Jin;Cho, Yong;Park, Jin-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.2-169.2
    • /
    • 2010
  • The research assesses the performance of the water-to-water heat pump system installed in Cheongju water treatment plant for cooling and heating ventilation. In summer season monthly averaged COP is ranged from 3.85 to 4.56 according to the water source temperature, and the performance is increased as the raw water temperature is dropped. While, heating performance is increased for the high temperature water source, and the monthly averaged COP is changed from 2.92 to 3.82. The correlation of the water source temperature and the heat pump performance shows a linear tendency by the simple regression of average data. In heating, the COP of heat pump system linearly rises according to the water source temperature. In comparison, the COP in cooling linearly reduces as the raw water temperature is raised. The goodness of fit at the simple regression shows the coefficient of determination 82% in cooling, 46% in heating. The electric cost of water-to-water heat pump is reduced by 40% compared to that of air source heat pump.

  • PDF

Effects of regenerator and cooler on the cooling performance of a vuilleumier cycle heat pump (재생기 및 냉각기가 VM열펌프의 냉방성능에 미치는 영향)

  • Lee, G.T.;Kang, B.H.;Yoo, H.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.333-342
    • /
    • 1997
  • An experimental study has been carried out to investigate the effects of the combination of the different wire mesh number in a regenerator and the tube number in a cooler on the cooling performance of a Vuilleumier cycle heat pump. Effects of operating conditions, such as charging pressure, operating speed, and heat input, on the cooling performance are also studied. The experimental results obtained indicate that the cooling performance could be improved with the proper combination of different wire meshes in a regenerator. More tubes in a cooler are desirable for better cooling performance. It is also found that the cooling capacity is enhanced, whereas COP is reduced with an increase in the heater tube temperature and the revolution speed. Both the cooling capacity and COP are incereased with a higher charging pressure.

  • PDF

An experimental study on cooling characteristic of a thermoelectric module (열전모듈의 냉각특성에 관한 실험적 연구)

  • Hwang, Jun;Kang, Byung Ha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • An experimental study has been carried out on cooling perfonnance of a thennoelectric module. This problem is of particular interest in the design of the refrigeration systems using thermoelectric module, such as cosmetic refrigerator, wine cellar and air cooler. The effect of the input voltage and the hot side temperature on the cooling performance is studied in detail. The $\Delta$T, temperature difference between cold side and hot side surface of thermoelectric module, is described in terms of the input voltage and the hot side temperature. It is found that the cooling capacity can be improved by increasing the input voltage and by reducing the heat from the hot side of the thermoelectric module. However, COP is decreased with an increase in the input voltage, since power consumption is also increased. Thus, optimum input voltage can be selected based on cooling capacity and COP.