• Title/Summary/Keyword: convex polyhedra

Search Result 8, Processing Time 0.023 seconds

Development of an Efficient Algorithm for the Minimum Distance Calculation between two Polyhedra in Three-Dimensional Space (삼차원 공간에서 두 다면체 사이의 최소거리 계산을 위한 효율적인 알고리즘의 개발)

  • 오재윤;김기호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.130-136
    • /
    • 1998
  • This paper develops an efficient algorithm for the minimum distance calculation between two general polyhedra(convex and/or concave) in three-dimensional space. The polyhedra approximate objects using flat polygons which composed of more than three vertices. The algorithm developed in this paper basically computes minimum distance between two polygons(one polygon per object) and finds a set of two polygons which makes a global minimum distance. The advantage of the algorithm is that the global minimum distance can be computed in any cases. But the big disadvantage is that the minimum distance computing time is rapidly increased with the number of polygons which used to approximate an object. This paper develops a method to eliminate sets of two polygons which have no possibility of minimum distance occurrence, and an efficient algorithm to compute a minimum distance between two polygons in order to compensate the inherent disadvantage of the algorithm. The correctness of the algorithm is verified not only comparing analytically calculated exact minimum distance with one calculated using the developed algorithm but also watching a line which connects two points making a global minimum distance of a convex object and/or a concave object. The algorithm efficiently finds minimum distance between two convex objects made of 224 polygons respectively with a computation time of about 0.1 second.

  • PDF

Development of an efficient algorithm for the minimum distance calculation between general polyhedra (일반적인 다면체 사이의 최소거리 계산을 위한 효율적인 알고리즘의 계산)

  • 임준근;오재윤;김기호;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1876-1879
    • /
    • 1997
  • This paper developes an efficient algorithm for the minimum distance calculation between general polyhedra(convex and/or concave). The polyhedron approximates and object using flat polygons which composed of more than three veritices. The algorithm developed in this paper basically computes minimun distance betwen two convex polygons and finds a set of polygons whcih makes a global minimum distance. The advantage of the algorithm is that the global minimum distance can be computed in any cases. But the big disadvantage is that minimum distance computing time is repidly increased with the number of polygons which used to approximate an object. This paper developes a method to eliminate unnecessary sets of polygons, and an efficinet algorithm to compute a minimum distance between two polygons in order to compensate the inherent disadvantage of the algorithm. It takes only a few times iteration to find minimum distance for msot polygons. The correctness of the algortihm are visually tested with a line which connects two points making a global minimum distance of simple convex object(box) and concave object(pipe). The algorithm can find minimum distance between two convex objects made of about 200 polygons respectively less than a second computing time.

  • PDF

Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra

  • Hong, Sung-Pil;Tuncel, Levent
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.107-110
    • /
    • 2004
  • We present a unifying framework to establish a lower-bound on the number of semidefinite programming based, lift-and-project iterations (rank) for computing the convex hull of the feasible solutions of various combinatorial optimization problems. This framework is based on the maps which are commutative with the lift-and-project operators. Some special commutative maps were originally observed by $Lov{\acute{a}}sz$ and Schrijver, and have been used usually implicitly in the previous lowerbound analyses. In this paper, we formalize the lift-and-project commutative maps and propose a general framework for lower-bound analysis, in which we can recapture many of the previous lower-bound results on the lift-and-project ranks.

  • PDF

Collision Avoidance Method Using Minimum Distance Functions for Multi-Robot System (최소거리함수를 이용한 다중 로보트 시스템에서의 충돌회피 방법)

  • Chang, C.;Chung, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.425-429
    • /
    • 1987
  • This paper describes a collision avoidance method for planning safe trajectories for multi-robot system in common work space. Usually objects have been approximated to convex polyhedra in most previous researches, but in case using such the approximation method it is difficult to represent objects analytically in terms of functions and also to describe tile relationship between the objects. In this paper, in order to solve such problems a modeling method which approximates objects to cylinder ended by hemispheres and or sphere is used and the maximum distance functions is defined which call be calculated simply. Using an objective function with inequality constraints which are related to minimum distance functions, work range and maximum allowable angular velocities of the robots, tile collision avoidance for two robots is formulated to a constrained function optimization problem. With a view to solve tile problem a penalty function having simple form is defined and used. A simple numerical example involving two PUMA-type robots is described.

  • PDF

Real-time collision detection for dynamic objects (동적 객체간의 실시간 충돌 감지 알고리즘)

  • Oh, Sang-Young;Hwang, Seon-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.717-720
    • /
    • 2008
  • This paper studies a collision detection technique to dealing with moving polyhedra. Even though the problem is well-studied in computer graphics, the existing methods are inapplicable to highly dynamic environments. We use the GJK algorithm to determine collisions between convex objects. Also, our method is applied for moving objects.

Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method - (비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 -)

  • Kim, Jong-Tae;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.