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A CONVERSE OF EULER’S THEOREM FOR

POLYHEDRA

Seung-Ho Ahn, Dong-Soo Kim and Young Ho Kim

Abstract. We give a converse of the well-known Euler’s theorem
for convex polyhedra.

Let D be the set of all convex polyhedra and Φ : D → N3 the
map defined by Φ(S) = (v, e, f), where N denotes the set of all natural
numbers, v, e, and f the number of vertices, edges, and faces of a convex
polyhedron S, respectively. Then the well-known Euler’s theorem for
polyhedra states that the image ImΦ of Φ is contained in the plane

Π = {(v, e, f) ∈ N3|v − e+ f = 2}.
A number of proofs of this theorem are presented in [2]. A heuristic
proof may be also found in [4]. For a brief history of the theorem, see
[1].

Obviously, ImΦ is a proper subset of the plane Π. Hence it is natural
to ask the following:

“For what values of (v, e, f) ∈ Π does there exist a convex polyhedron
S with Φ(S) = (v, e, f)?”

In this short note, we give a complete answer to this question. More
precisely, we shall give the following:

Theorem. The image of the map Φ : D→ N3 is given by

ImΦ = {(v, e, f) ∈ N3|v − e+ f = 2, 2e ≥ 3f, f ≥ 4}.

First we give
Lemma 1. Let v, e, and f denote the number of vertices, edges, and
faces of a convex polyhedron S, respectively. Then we have

(1) 2e ≥ 3f,
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where the equality holds in (1) if and only if each face is a triangle.

Proof. We give a proof for completeness. Let fn stand for the number
of those faces that have precisely n sides, then we have

(2) f =

∞∑
n=3

fn.

Furthermore, since every edge of the polyhedron is a side of exactly two
faces, we also obtain

(3) 2e =

∞∑
n=3

nfn.

Then, (2) and (3) imply the following inequality:

(4) 2e =

∞∑
n=3

nfn ≥ 3
∞∑
n=3

fn = 3f,

which completes the proof of (1). The equality condition of (1) follows
immediately from (4). �

Now we define three maps gi : N3 → N3, i = 1, 2, 3 as follows:

(5)

g1(v, e, f) = (v + 1, e+ 1, f),

g2(v, e, f) = (v + 1, e+ 2, f + 1),

g3(v, e, f) = (v + 1, e+ 3, f + 2).

Then we have

Lemma 2. Each map gi, i = 1, 2, 3 maps ImΦ into ImΦ.

Proof. For any (v, e, f) ∈ ImΦ, we consider a convex polyhedron S in
D with Φ(S) = (v, e, f). Fix a convex n-gonal face σ = P1P2 · · ·Pn of
the polyhedron S where P1, P2, · · · , Pn denote the consecutive vertices
of the face σ. Then, without loss of generality, we may assume that the

straight line
←−→
P1P2 does not pass through P3. Choose an interior point

P of the edge P1P2 and an interior point Q of the triangle P1P2P3.
We now construct a polyhedron S1 consisting of the vertices as P and

all of vertices of S, the edges as P1P, PP2 and all edges of S other than
P1P2 and the faces as all of faces of S. Then S1 is a convex polyhedron
with Φ(S1) = (v + 1, e + 1, f). Next, we consider the polyhedron S2
consisting of the vertices as P and other vertices of S, the edges as
P1P, PP2, PP3 and all edges of S other than P1P2 and the faces as
P1PP3 · · ·Pn, PP2P3 and all of faces of S except σ. Then S2 is a convex
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polyhedron with Φ(S2) = (v + 1, e+ 2, f + 1). Finally, we construct the
polyhedron S3 which consists of the vertices as Q and the vertices of
S, the edges as P1Q,P2Q,P3Q and all of edges of S and the faces as
P1QP3 · · ·Pn, P1P2Q,P2P3Q and all of faces of S other than σ. We see
that S3 is a convex polyhedron with Φ(S3) = (v + 1, e+ 3, f + 2).

From (5) we see that each map gi, i = 1, 2, 3 satisfies gi(v, e, f) =
Φ(Si), which completes the proof. �

We now prove our theorem. Suppose that (v, e, f) ∈ N3 satisfies the
following:

(6) v − e+ f = 2,

and

(7) 2e ≥ 3f, f ≥ 4.

First note that for a tetrahedron Σ we have Φ(Σ) = (4, 6, 4).
Case 1. If v ≥ f , then (6) shows that (v, e, f) satisfies the following:

(8) (v, e, f)− (4, 6, 4) = (v − f)(1, 1, 0) + (f − 4)(1, 2, 1).

Let m and n denote the integers v− f and f − 4, respectively. Then (7)
implies that m and n are nonnegative integers. (8) shows that

(9) (v, e, f) = gn2 ◦ gm1 (4, 6, 4).

Case 2. If v < f , then (6) shows that (v, e, f) satisfies the following:

(10) (v, e, f)− (4, 6, 4) = (2e− 3f)(1, 2, 1) + (f − v)(1, 3, 2).

Let m and n denote the integers 2e− 3f and f − v, respectively. Then
(7) implies that m,n are nonnegative integers. (10) implies that

(11) (v, e, f) = gn3 ◦ gm2 (4, 6, 4).

Thus together with (9) and (11), Lemma 2 shows that Φ(S) = (v, e, f)
for a convex polyhedron S, which can be constructed from a tetrahedron
Σ. This together with Lemma 1 completes the proof of our theorem.

Remark. In [3], they prove as follows that Euler characteristic χ =
v − e+ f for polyhedra is the essentially unique topological invariant:
Consider a map g : D → R given by g(S) = g(v, e, f), where Φ(S) =
(v, e, f). Suppose that g is topologically invariant. Then g is a function
of χ = v − e+ f .



498 Seung-Ho Ahn, Dong-Soo Kim and Young Ho Kim

References

[1] Hilton, P. and Pedersen, J., The Euler characteristic and Polya’s dream, Amer.
Math. Monthly 103(1996), 121-131.

[2] Hopf, H., Differential Geometry in the Large, Springer-Verlag, Berlin, 1983.
[3] Pak, C. R., Kim, S.-B., Kim, D.-S. and Cho, K. I., Are there any numbers other

than the Euler number for polyhedra? (Korean), Comm. Korean Math. Soc. 15
(2000), no. 4, 669-674.

[4] Polya, G., Mathematical Discovery, Combined Edition, John Wiley and Sons,
Inc., New York, 1981.

Seung-Ho Ahn
Department of Mathematics, Chonnam National University,
Kwangju 500-757, Korea.
E-mail: shahn@chonnam.ac.kr

Dong-Soo Kim
Department of Mathematics, Chonnam National University,
Kwangju 500-757, Korea.
E-mail: dosokim@chonnam.ac.kr

Young Ho Kim
Department of Mathematics, Kyungpook National University,
Taegu 702-701, Korea.
E-mail: yhkim@knu.ac.kr




