• Title/Summary/Keyword: converter optimization

Search Result 130, Processing Time 0.023 seconds

Minimization of Sulfur Dioxide Gas Emission by Process Optimization of Sulfuric Acid Plants (공정최적화에 의한 황산공장의 이산화황가스 배출 최소화)

  • Cho Byoung-Hak;Song Kwang Ho;Kim In-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.70-76
    • /
    • 1999
  • Because of the tight pollution control of $SO_2$ emission, sulfuric acid manufacturers have been interested in the operation with the highest possible conversion efficiency. In this work, the design criteria and operating conditions of the catalytic converter were investigated for maximum conversion efficiency and minimum $SO_2$ emission by parametric analysis and process optimization for the existing acid plants. The Double Converter/Double Absorber(DC/DA) process was investigated by varying $SO_2$ compositions of feed gas, pressures and temperatures of layers of the converter and the depth of the catalyst beds. In order to evaluate the process, a computer simulator for sulfuric acid plants has been developed. The results by process optimization could be used for the converter design and operating conditions with highest conversion efficiency.

  • PDF

Fault-Tolerant Control of Cascaded H-Bridge Converters Using Double Zero-Sequence Voltage Injection and DC Voltage Optimization

  • Ji, Zhendong;Zhao, Jianfeng;Sun, Yichao;Yao, Xiaojun;Zhu, Zean
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.946-956
    • /
    • 2014
  • Cascaded H-Bridge (CHB) converters can be directly connected to medium-voltage grids without using transformers and they possess the advantages of large capacity and low harmonics. They are significant tools for providing grid connections in large-capacity renewable energy systems. However, the reliability of a grid-connected CHB converter can be seriously influenced by the number of power switching devices that exist in the structure. This paper proposes a fault-tolerant control strategy based on double zero-sequence voltage injection and DC voltage optimization to improve the reliability of star-connected CHB converters after one or more power units have been bypassed. By injecting double zero-sequence voltages into each phase cluster, the DC voltages of the healthy units can be rapidly balanced after the faulty units are bypassed. In addition, optimizing the DC voltage increases the number of faulty units that can be tolerated and improves the reliability of the converter. Simulations and experimental results are shown for a seven-level three-phase CHB converter to validate the efficiency and feasibility of this strategy.

Analysis and Optimization of Bidirectional Exponential SC Power Conversion Circuits

  • Ye, Yuanmao;Peng, Wei;Jiang, Bijia;Zhang, Xianyong
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.672-680
    • /
    • 2018
  • A bidirectional exponential-gain switched-capacitor (SC) DC-DC converter is developed in this paper. When compared with existing exponential SC converters, the number of switches is significantly reduced and its structure is simplified. The voltage transfer features, voltage ripple across capacitors, efficiency and output impedance of the proposed converter are analyzed in detail. Optimization of the output impedance is also discussed and the best type of capacitance distribution is determined. A common function of the voltage gain to the output impedance is found among the proposed converter and other popular SC voltage multipliers. Experimental evaluation is carried out with a 6-24V bidirectional prototype converter.

A Study on Core Structure of High Frequency Transformer to Improve Efficiency of Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 2014
  • Recently, module-integrated converter (MIC) research has shown interest in small-scale photovoltaic (PV) generation. The converter is capable of efficient power generation. In this system, the high frequency transformer should be made compact, and demonstrate high efficiency characteristics. This paper presents a core structure optimization procedure to improve the efficiency of a high frequency transformer of compact size. The converter circuit is considered in the finite element analysis (FEA) model, in order to obtain an accurate FEA result. The results are verified by the testing of prototypes.

Optimal Switching Pattern for PWM AC-AC Converters Using Bee Colony Optimization

  • Khamsen, Wanchai;Aurasopon, Apinan;Boonchuay, Chanwit
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.362-368
    • /
    • 2014
  • This paper proposes a harmonic reduction approach for a pulse width modulation (PWM) AC-AC converters using Bee Colony Optimization (BCO). The optimal switching angles are provided by BCO to minimize harmonic distortions. The sequences of the PWM switching angles are considered as a technical constraint. In this paper, simulation results from various optimization techniques including BCO, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) are compared. The test results indicate that BCO can provide a better solution than the others in terms of power quality and power factor improvement. Lastly, experiments on a 200W AC-AC converter confirm the performance of the proposed switching pattern in reducing harmonic distortions of the output waveform.

Study of Shape Optimization for Automobile Lock-up Clutch Piston Design with B-spline Curve Fitting and Simplex Method (B-spline Curve Fitting 과 심플렉스법을 적용한 자동차 록업클러치 피스톤 형상최적설계에 관한 연구)

  • Kim, Choel;Hyun, Seok-Jeong;Son, Jong-Ho;Shin, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1334-1339
    • /
    • 2003
  • An efficient method is developed for the shape optimization of 2-D structures. The sequential linear programming is used for minimization problems. Selected set of master nodes are employed as design variables and assigned to move towards the normal direction. After adapting the nodes on the design boundary, the B-spline curves and mesh smoothing schemes are used to maintain the finite element in good quality. Finally, a numerical implementation of optimum design of an automobile torque converter piston subjected to pressure and centrifugal loads is presented. The results shows additional weight up to 13% may be saved after the shape optimization.

  • PDF

Hierarchical Control Scheme for Three-Port Multidirectional DC-DC Converters in Bipolar DC Microgrids

  • Ahmadi, Taha;Hamzeh, Mohsen;Rokrok, Esmaeel
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1595-1607
    • /
    • 2018
  • In this paper, a hierarchical control strategy is introduced to control a new three-port multidirectional DC-DC converter for integrating an energy storage system (ESS) to a bipolar DC microgrid (BPDCMG). The proposed converter provides a voltage-balancing function for the BPDCMG and adjusts the states of charge (SoC) of the ESS. Previous studies tend to balance the voltage of the BPDCMG buses with active sources or by transferring power from one bus to another. Furthermore, the batteries available in BPDCMGs were charged equally by both buses. However, this power sharing method does not guarantee efficient operation of the whole system. In order to achieve a higher efficiency and lower energy losses, a triple-layer hierarchical control strategy, including a primary droop controller, a secondary voltage restoration controller and a tertiary optimization controller are proposed. Thanks to the multi-functional operation of the proposed converter, its conversion stages are reduced. Furthermore, the efficiency and weight of the system are both improved. Therefore, this converter has a significant capability to be used in portable BPDCMGs such as electric DC ships. The converter modes are analyzed and small-signal models of the converter are extracted. Comprehensive simulation studies are carried out and a BPDCMG laboratory setup is implemented in order to validate the effectiveness of the proposed converter and its hierarchical control strategy. Simulation and experimental results show that using the proposed converter mitigates voltage imbalances. As a result, the system efficiency is improved by using the hierarchical optimal power flow control.

Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems (태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석)

  • Cho, Hyun-Cheol;Yoo, Su-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1175-1183
    • /
    • 2009
  • In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.

Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading (위상 최적화 기법을 이용한 충격하중에 대한 차량 탑재형 전력변환장치의 마운트 경량화 설계)

  • Ko, Dong-Shin;Lee, Hyun-Kyung;Hur, Deog-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.353-358
    • /
    • 2018
  • In this study, it is describe to an optimization analysis process for the weight reduction of the voltage converter in the electric vehicle charging systems. The optimization design is a technique that finds the optimal material distribution under a given material quantity constraint by combining the design sensitivity with the material properties and the mathematical optimization. Among the topology optimization, a lightweight design is performed by a solid isotropic material with penalization with simple formula and well-convergence. The lightweight design consists of three steps. As a first step, a finite element model for the basic design of the on-board voltage converter was constructed and static analysis was performed on the load. In the second step, the optimum shape is obtained for the lightweight by performing the topology optimization using the solid isotropic material with penalization applying the stiffness coefficient of the isotropic material to the static analysis result. As a final step, impact analysis was performed by applying a half-sinusoidal pulse shape impact load which satisfies the impact test standard of the vehicle-mounted part with respect to the optimum shape. In the topology optimization, the design domain was defined as the mounting bracket area, and the design technology was finally achieved by optimizing the mounting bracket to achieve a weight reduction of 20% over the basic design.

Real time Implementation of SHE PWM in Single Phase Matrix Converter using Linearization Method

  • Karuvelam, P. Subha;Rajaram, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1682-1691
    • /
    • 2015
  • In this paper, a real time implementation of selective harmonic elimination pulse width modulation (SHEPWM) using Real Coded Genetic Algorithm (RGA), Particle Swarm Optimization technique (PSO) and a new technique known as Linearization Method (LM) for Single Phase Matrix Converter (SPMC) is designed and discussed. In the proposed technique, the switching frequency is fixed and the optimum switching angles are obtained using simple mathematical calculations. A MATLAB simulation was carried out, and FFT analysis of the simulated output voltage waveform confirms the effectiveness of the proposed method. An experimental setup was also developed, and the switching angles and firing pulses are generated using Field Programmable Gate Array (FPGA) processor. The proposed method proves that it is much applicable in the industrial applications by virtue of its suitability in real time applications.