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Abstract 
 

A bidirectional exponential-gain switched-capacitor (SC) DC-DC converter is developed in this paper. When compared with 

existing exponential SC converters, the number of switches is significantly reduced and its structure is simplified. The voltage 

transfer features, voltage ripple across capacitors, efficiency and output impedance of the proposed converter are analyzed in 

detail. Optimization of the output impedance is also discussed and the best type of capacitance distribution is determined. A 

common function of the voltage gain to the output impedance is found among the proposed converter and other popular SC 

voltage multipliers. Experimental evaluation is carried out with a 6-24V bidirectional prototype converter. 
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I. INTRODUCTION 

Due to the advantages of the absence of bulky magnetic 

components and IC compatibility, switched-capacitor (SC) 

power converters have been recieving a lot of attention from 

researchers [1]-[22]. The authors of [2]-[7] presented the 

analysis, design, regulation and control of SC converters in 

detail, while various modeling methods have been introduced 

in [8]-[10]. In particular, two-phase SC converters, also 

known as voltage multipliers [11]-[14], have been widely 

used in different applications such as flash memory devices, 

biomedical systems, LCD drivers, etc. [15]-[17]. The most 

popular SC power converters include the series-parallel (SP) 

[18], Dickson [13], Fibonacci [19] and exponential-gain SC 

converters [20], [21]. 

In this paper, a new exponential-gain SC converter is 

developed by cascading multiple double-mode switched- 

capacitor (DMSC) cells. When compared with the existing 

exponential-gain SC converter shown in Fig. 1, the proposed 

converter has the advantages of a reduced number of switches 

and a simple circuit configuration. The voltage transfer features 

and voltage ripples across the capacitors as well as the power 

conversion efficiency are analyzed using Kirchhoff’s voltage 

law (KVL) and Kirchhoff’s current law (KCL). The output 

impedance is also derived in the two cases where the parasitic 

resistances are considered and ignored. 

For practical applications, the size and cost of a SC 

converter is dominated by the total capacitance C and the 

number of switches. The output impedance is directly related 

to the total capacitance C and the switching frequency of the 

SC converter. However, with the difference distribution 

manner of the total capacitance, the output impedance is 

varied. In this paper, the effect of the capacitance distribution 

on the output impedance is discussed, and an optimized 

capacitance distribution method is developed for the minimum 

output impedance. This optimized method is further extended 

to the aforementioned high order SC converters. Compared 

with other studies, the proposed SC converter has the 

advantage of a simpler structure. 

Based on the theoretical analysis, a 6-24V bidirectional 

prototype converter is built to evaluate the performance of the 

proposed exponential-gain converter. 

 

II. BIDIRECTIONAL EXPONENTIAL-GAIN SC 

CONVERTER 

A. Circuit Configuration 

Fig. 2 shows the proposed bidirectional exponential-gain  
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Fig. 1. Conventional exponential-gain SC converter. 
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Fig. 2. Proposed bidirectional exponential-gain SC converter: (a) 

Topology; (b) Time slots. 

 

SC converter. Fig. 2(a) shows the topology which is cascaded 

by multiple DMSC cells. Each DMSC cell is made up of four 

transistors and two flying capacitors. VL and VH represent the 

low and high voltage terminals, respectively. As indicated in 

Fig. 2(b), there are two clock phases, Φa and Φb, when the 

switch will be closed. The two phases are fully complementary 

and equally divide a switching cycle. In practice, a small 

dead-time is required between the two phases. 

B. No-Load Analysis 

For sake of convenience, it is assumed that all of the 

components are ideal, i.e. there is no on-resistance for the 

switches, and the equivalent series resistance (ESR) for the 

capacitors are made for the following analysis. 

Fig. 3 gives the two alternate state circuits for the proposed 

SC converter. For the clock phase Φa, the positive electrodes 

of VL, VH and Ci1 (i=1, 2, …, n) are connected together as 

shown in Fig.3(a). By using the KVL for the whole state 

circuit, the KVL equation can be obtained as: 
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Fig. 3. State circuits of the proposed SC converter: (a) Phase Φa; 

(b) Phase Φb. 
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For the clock phase Φb, as shown in Fig.3(b), the negative 

electrodes of VL, VH and Ci2 (i=1, 2, …, n) are connected 

together. Similarly, the KVL equation can be obtained as: 

Phase Φb:   
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According to equations (1) and (2), the ideal voltage 

transfer relationship for the proposed SC converter can be 

derived and is given in: 
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C. With-Load Analysis 

When one terminal (VL or VH) of the proposed converter is 

used as an input terminal and the other one is connected with 

a load, current flows form the input terminal to the output 

node through all of the DMSC cells. Each capacitor operates 

alternatively in the charging and discharging states during 

each switching cycle. Considering the on-resistance of the 

switches and the ESR of the capacitors, state circuits of the 

proposed exponential-gain SC converter are depicted in Figs. 

4(a) and 4(b) for phases Φa and Φb, respectively. Rk1 and Rk2 

(k=1, 2, …, n) are the ESR of Ck1 and Ck2, and the 

on-resistances of the corresponding switches are regarded as 

a part of them. 
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Fig. 4. State circuits with parasitic resistances: (a) Phase Φa; (b) 

Phase Φb. 

 

When VL is the input terminal and VH is the output terminal, 

the SC converter operates in the step-up mode and all of the 

currents denoted in Figs. 4(a) and 4(b) are positive, and 

vice-versa. By using the KCL for the state circuits, the KCL 

equations can be obtained as: 
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Phase Φb:   
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In the stable state, the amount of charge flowing into and 

out of each capacitor should be the same during one 

switching cycle. Based on the assumptions that the two 

capacitors employed in each cell are the same and that both 

are represented by Ck, i.e. Ck1=Ck2=Ck, the relationship of 

charge flowing into/out of all of the capacitors and through 

the two terminals can be derived from (4) and (5), which is 

expressed as: 
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where △QL and △Q H are the charge flowing through the 

terminals VL and VH, respectively. In addition, △Qk (k=1, 2, 

…, n) is the amount of charge transferred into/out of the 

capacitor Ck, during one switching cycle. 

The voltage ripples across the capacitors can be derived 

from equation (6) and is expressed by: 
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where fS is the switching frequency of the converter. In 

addition, IL and IH are the average currents flowing through 

the terminals VL and VH, respectively. 

Additionally, the power conversion efficiency of the 

proposed converter can be expressed by using the input 

energy and output energy during one switching cycle. 

Therefore, according to (6), the efficiency of the SC 

converter can be expressed as: 
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III. MODELING OF THE PROPOSED SC CONVERTER 

A. Modeling of a Single DMSC Cell 

All of the DMSC cells employed in the proposed converter 

are made up of two symmetrical phases. There are the same 

average voltage and ripple, and inverse operation for the two 

capacitors Ck1 and Ck2. During phase Φa, the voltage across 

Ck1 increases from VCk_min to VCk_max, while the voltage across 

Ck2 decreases from VCk_max to VCk_min. On the other hand, the 

voltage across Ck1 decreases from VCk_max to VCk_min, while the 

voltage across Ck2 increases from VCk_min to VCk_max during the 

period of phase Φb. For the two operation stages, the sum 

voltage Vk=VCk1+VCk2 is almost constant and its ripple is far 

smaller than that for each of the capacitors and can be 

neglected. The two states can be generally depicted by Fig. 

5(a). 

Based on the above analysis, the input and output voltages 

of the DMSC cell, Vk-1 and Vk, can both be regarded as 

constant. The operation of the DMSC cell, during half of a 

switching cycle can be mathematically described as: 
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Fig. 5. Single DMSC cell: (a) State circuit; (b) Model. 

 

where ik_cr and ik_dr represent the charging and discharging 

currents of the capacitors, respectively. Both of them have the 

same average value Ik since the two phases Φa and Φb are 

fully complementary and evenly divide a switching cycle. 

Therefore, the voltage transfer relationship can be derived as: 
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where fS is the switching frequency. In addition, Ik is the 

average value of both the charging and discharging currents, 

ik_cr and ik_dr, and it is the output average current of the DMSC 

cell. 

Therefore, the output impedance of a single DMSC cell for 

the step-up mode is expressed by: 
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Similarly, the output impedance for the step-down mode 

can be derived as: 
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An equivalent model of the single DMSC cell in the 

proposed converter for bidirectional operation can be 

generally described as shown in Fig. 5(b). 

B. Modeling of the Proposed SC Converter 

Considering that the proposed SC converter is cascaded by 

multiple DMSC cells, the model of the proposed converter 

can also be developed as shown in the upper half of Fig. 6. 

For the step-up operation, the terminal VL is used as the 

input terminal and the load is connected to the terminal VH.  
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Fig. 6. Model of the proposed converter. 

 

The voltage transfer relationship can be derived from (12), 

and is given as: 
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where Ik and ROk (k=1, 2, …, n) are the average output current 

and output impedance for each of the SC cells, respectively. 

In addition, Vn and In are the actual output voltage and current 

of the proposed converter in the step-up operation. An 

equivalent model of the proposed converter for the step-up 

mode can be further developed as shown in the lower half of 

Fig. 6, and the voltage transfer relationship is developed as: 
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This means the output impedance of the whole SC 

converter can be expressed as: 
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Similarly, when VH is used as the input terminal, the 

voltage transfer relationship and the output impedance for the 

step-down mode can be developed, and they are given as: 
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In the case of ignoring the impact of the parasitic resistors, 

the output impedance of (17) and (19) can be simplified as: 
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By comparing (17) with (19), (20) and (21), the relationship 

between the output impedances of both the step-up and 

step-down operation modes can be expressed as: 

 n
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Hence, the mode of Fig. 6 can be applied for both the 

step-up and step-down operation modes of the proposed 

bidirectional SC converter. 

 

IV. OPTIMIZATION OF THE OUTPUT IMPEDANCE 

A. Impact of the Capacitance Distribution 

It can be seen from (20) and (21) that larger capacitances 

are required for a smaller output impedance. However, in 

practice, the values of the capacitors cannot be infinitely large 

and a larger capacitance means a higher cost and a larger size. 

For the proposed converter, although the two capacitors Ck1 

and Ck2 employed in each of the DMSC cells need to be the 

same, i.e. Ck1=Ck2=Ck, the capacitors for different cells may 

be varied. Therefore, the method to allocate the total 

capacitance C to all of the capacitors for the minimum output 

impedance is a topic that should be explored. 

When the total capacitance C is evenly distributed to all of 

the DMSC cells, the value of each capacitor is Ck=C/2n. 

According to (7), the voltage ripple across Ck is decreased 

exponentially, and is given as: 
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Ignoring the impact of the parasitic resistances, the output 

impedance for the step-up mode can be calculated according 

to (20), and is given as: 
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B. Minimum Output Impedance 

In order to obtain the minimum output impedance for the 

constant total capacitance C, C1 is described as 

C1=C/2-C2-…-Ck-…-Cn. Substituting this into (20) and letting 

the partials with respect to the capacitance Ck equal to zero, 

i.e. 
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As a result, the capacitance Ck can be expressed as: 
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Considering that the total capacitance is C and k is ranged 

from 1 to n, the capacitance Ck can be further expressed by: 
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Then the minimum output impedance can be obtained by 

substituting (27) into (20), and is given as: 
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The analysis above is mainly discussed for the step-up 

operation mode of the proposed converter. Similarly, 

according to (22), the minimum output impedance for the 

step-down operation mode is obtained in the same case. 

 

V. COMPARISON WITH OTHER WORKS 

In practice, the size and cost of a SC converter is 

dominated by the total capacitance C and the number of 

switches. As mentioned before, a smaller output impedance 

means a higher power efficiency. With the assumption that all 

of the parasitic resistances are ignored, the output impedance 

of a SC converter is determined by the switching frequency, 

the total capacitance C and the capacitance distribution. For 

different high order SC converters like the SP, Dickson and 

Fibonacci, there are different capacitance distribution laws 

for their minimum output impedances. 

Table I lists the characteristics of the proposed and other 

high order SC converters with n stages. These characteristics 

include the voltage gain m, the best capacitance distribution 

law, the number of switches, the minimum output impedance 

and the relationship between the minimum output impedance 

and the voltage gain. This shows there are the same voltage 

gains and the same best capacitance distribution law as well 

as the same minimum output impedance for both the SP and 

Dickson converters. Common characteristics are also found 

in both the conventional and proposed exponential-gain SC 

converters. However, the number of switches required in the 

Dickson and the proposed converters is far less than that for 

the SP and conventional exponential-gain converters. 

A noticeable characteristic is that there is a common 

relationship between the minimum output impedance and the 

voltage gain for all of the high order SC converters listed in 

Table I. This means that with the same total capacitance C 

and switching frequency fS, using different topologies to 

obtain the same voltage gain, the same output impedance and 

power conversion efficiency ca be developed. The more 

intuitive relationship is depicted in Fig. 7. 

Additionally, the number of switches required for different 

DC converters is listed in the fourth column of Table I. In 

addition, the relationships between the number of switches 

and the voltage gain are depicted in Fig. 8. This figure shows 

that the minimum and maximum numbers of switches are 

required in the proposed exponential-gain and SP converters, 

for the same voltage gain. 

Overall, the proposed SC converter is more suitable for 

high-voltage-gain applications. However, its flexibility is 

inferior to the Dickson SC converter. 
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TABLE I 
CHARACTERISTICS OF DIFFERENT TWO-PHASE SC CONVERTERS 
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Fig. 7. Output impedance versus the voltage gain when 
fSC=1(Hz×F). 

 

 
Fig. 8. Number of switches as function of the voltage gain. 

 

VI. EXPERIMENTAL RESULTS 

In order to analyze the properties of the proposed 
exponential-gain SC converter, a 6-24V bidirectional prototype 
has been built by cascading two DMSC cells, as shown in Fig. 
9. Eight MOSFETs with on-resistances of 11mΩ are selected 
for the switches. In the first DMSC cell, both of the 
capacitors C11 or C12 are made up of two 1000uF/55mΩ 
electrolytic capacitors connected in parallel. The capacitors 
C21 and C22 in the second DMSC cell are both single 
1000uF/55mΩ electrolytic capacitors. Additionally, a 1000uF 
electrolytic capacitor is used in the low voltage terminal as a 
filter. The controller is developed by IR2153 and the isolated  

 
Fig. 9. Prototype of a 6-24V bidirectional converter. 

 

 
              (a)                           (b) 
Fig. 10. Current waveforms of the prototype converter: (a) 
Step-up operation; (b) Step-down operation. 
 

gate driver is completed based on pulse transformers. In order 
to reduce the effect of the ESL and switching losses, the 
prototype works at a 10 kHz switching frequency. To 
improve the power density, the isolated pulse transformer 
driver can be replaced by an optocoupler or another floating 
gate driver. In addition, ceramic capacitors and a higher 
switching frequency can be used in practical industrial 
applications. 

When the low voltage terminal of the prototype circuit is 
connected with a 6V voltage source and the high voltage 
terminal is connected to an electronic load with constant 
output current IO=1A, the currents flowing through the 
capacitors as well as the power source current Iin are captured 
as shown in Fig. 10(a). Similarly, when the high voltage 
terminal of the prototype circuit is connected with a 24V 
voltage source and the low voltage terminal is connected to 
an electronic load with a constant current 4A, the current 
waveforms are shown in Fig. 10(b). It can be seen that the 
average charging and discharging currents are about 2A for 
C11 and C12, and about 1A for C21 and C22. The average 
current of the low voltage terminal is almost four times that 
in the high voltage terminal. 
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(a) 

 
(b) 

Fig. 11. Output voltage versus output current: (a) Step-up 

operation (6V to 24V); (b) Step-down operation (24V to 6V). 

 

 

Fig. 12. Output voltage transient waveform of the prototype 

versus the output current. 

 

As mentioned in (16) and (18), increasing the output 

current decreases the output voltage. For the bidirectional 

prototype converter, the load regulations for the step-up and 

step-down operations are measured as shown in Figs. 11(a) 

and 11(b), respectively. The output voltage falls from 23.85V 

when the output current is 0.2A to 22.09V when the output 

current increases to 3A for the step-up operation. Similarly, it 

decreases from 5.96V to 5.58V when the output current rises 

from 1A to 13A, for the step-down operation. The practical 

output impedances of the prototype converter are 0.64Ω for 

the step-up mode and 33mΩ for the step-down mode, which 

are slightly larger than the theoretical values of 0.51Ω and 

31mΩ, respectively. 

Fig. 12 shows output voltage transient waveforms of the 

prototype operating in the step-up mode when the output 

current changes between 1A and 2A. As mentioned before, 

the voltage drop caused by the output impedance of the 

converter reduces the output voltage while a higher output 

current means a lower output voltage. 

 

Fig. 13. Measured efficiency of the prototype converter. 

 

Fig. 13 shows the efficiency of the bidirectional prototype 

converter with different output powers. This indicated that there 

is almost the same power conversion efficiency for both the 

step-up and step-down operation modes under the same output 

power. In addition, the maximum efficiencies for the step-up 

and step-down operations are 95.5% and 95.3%, respectively. 

Both of them are achieved at round 30W output power. 

 

VII. CONCLUSIONS 

A new exponential-gain DC-DC converter for a 

bidirectional power flow is developed based on the SC 

technique. The voltage conversion characteristics and model 

are derived using the KVL and KCL principles for the 

proposed converter. The effect of the capacitance distribution 

on the output impedance is discussed. This indicates there is 

the same minimum output impedance between the proposed 

converter and other existing two-phase SC converters for the 

same voltage transfer ratio. Of course, there is a shortcoming 

in the proposed converter since the input and output terminals 

cannot share a common neutral. A two-stage prototype 

converter designed for a 6-24V bidirectional power flow was 

built based on the theoretical analysis. Experimental results 

support the theoretical analysis and the practical output 

impedance since the step-up and step-down operations are 

both just slightly larger than their theoretical values. 
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