• Title/Summary/Keyword: converted strain

Search Result 145, Processing Time 0.026 seconds

Study on Strain Response Converted from Deformation in Tensile Test of Carbon Fiber Reinforced Polymers (CFRP) (탄소섬유보강폴리머의 인장시험시 변형으로부터 환산한 변형률 응답에 대한 연구)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.137-144
    • /
    • 2019
  • In coupon test of carbon fiber reinforced polymers (CFRP) as brittle materials, the converted strain derived from total deformation and effective length was introduced and its advantages were described. In general, measured value from strain gauge is used for determining the tensile properties of material, but it is not quite effective in CFRP because brittle material can not redistribute its stress and it only represents local behavior. For this reason, the converted strain response can be utilized effectively as a supplementary indicator, which evaluated the average value of tensile properties in brittle material and confirmed the strain measured by strain gauge. In addition, the converted strain clearly visualized 1) the effect of initial internal strain caused by fabrication errors and setup misalignment when applying gripping force and 2) post-response of partial rupture of CFRP caused by non-uniform strain distribution. non-uniform strain distribution.

Study on Tensile Properties of Carbon Fiber Reinforced Polymers (CFRP) Laminate with Strain Distribution (변형률 분포를 가진 탄소섬유복합체의 인장특성에 대한 연구)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.25-33
    • /
    • 2020
  • To investigate the relationship between strain distribution and tensile properties of brittle material, five types of tensile coupon of carbon fiber reinforced polymer (CFRP) modified the tab portion in order to have a strain distribution including S0, SD1, SD2, SV1, SV2 were tested. The ultimate stress and strain of SD2 and SV2 which was intended to have larger strain distribution were smaller than those of SD1 and SV1, that was more clearly shown in the test results of the symmetric coupons (SV series) than the asymmetric coupons (SD series). In addition, the ultimate stress and strain of most coupons with strain distribution in this study were decreased when compared to the control group with uniform strain. These results were analyzed in various ways through 1) the average of the strain values directly measured by the strain gages, 2) the converted strain calculated by dividing the total deformation by the effective length, and 3) the ultimate effective strain derived from both the elastic modulus and the ultimate load. The values measured by strain gage indicates response of the local region precisely, but it does not represent the response from whole section. However, the converted strain and effective strain can supplement disadvantage of gage because they represent the average response of whole section. In particular, the effective strain can provide rupture strain conservatively, which can be utilized in practice, when the value obtained by strain gage was not effective due to gage damage or abnormal gage readings near ultimate load. This value provides a value that can be used even when partial rupture has occurred and is reasonably useful for specimens with strain distribution.

Characterization of superplastic material SPF8090 AI-Li with the variation of the strain rate and the temperature (변형률속도와 온도에 따른 SPF8090 Al-Li 초소성 재료의 물성 특성)

  • Lee, Ki-Seok;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.425-434
    • /
    • 1997
  • A superplastic material, aluminum-lithium alloy 8090, was examined with uniaxial tensile tests to investigate its thermomechanical behavior. The tests were carried out at the strain rate ranging from $2X10^4 to 1X10^2$ and at the temperature from 48$0^{\circ}C$ to 54$0^{\circ}C$. The experiments produced force-dis-placement curves which were converted to stress-strain curves. From the curves, the optimum conditions of superplastic forming were obtained by deteriming the strain rate sensitivety, the optimum strain rate, and the strength coefficient for various forming temperatures.

  • PDF

A Study on the strain hardening of tube hydroforming according to process (튜브 액압성형품의 공정단계별 가공 경화 특성 연구)

  • Park, H.K.;Yim, H.S.;Yi, H.K.;Jeon, D.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.325-328
    • /
    • 2008
  • In recent years, developments of light weight vehicle are one of the most important issues in automotive industry. It is important to know the variations of the mechanical properties in the hydro forming process for the safe and durable design purposes. Generally, tube hydroforming process consists of three main processes such as bending, preforming, and hydroforming. It means that the strain hardening histories of final products are nonlinear. In this study, strain hardening behavior during hydroforming has been investigated by hydroforming of engine cradle as a model process. The variation of mechanical properties such as local hardness and strength were used as an index of strain hardening during respective processes. The correlationship between strength and hardness obtained from tensile test has been equivalently converted into correlation between hardness and measured strain.

  • PDF

On Reliability and Comparison of $J_{Rice}$-Resistance considering Optimal Strength Ratio and $J_{\delta}$-Resistance Curves converted from CTOD using Appropriate Strength chosen according to Strain Hardening Level (강도비를 적용한 Rice-저항곡선과 변형경화를 고려한 $J_{\delta}$-저항곡선과의 비교)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2002
  • The comparison of $J_{Rice}$-resistance considering a few strength ratio in Rice J-integral formula and $J_{\delta}$-resistance curves converted from experimental CTOD using appropriate strength chosen according to strain hardening level, n=10.6 (A533B steel) and n=8.1 (BS4360 steel) is carried out. The optimal dimensionless strength ratio like the factor of revision, (see full text)reflecting strain hardening level in Rice\`s experimental formula is found out and the reliability of appropriate reference strength chosen according to strain hardening level in different materials is investigated through doing that CTOD is transformed from $J_{\delta}$-integral using relationship between J-integral and CTOD. The results are as follows; 1) The optimal factor of revision is when m equals to 3 in (see full text) for Rice's and the above optimal factor of revision multiplies by coefficient, η in Rice's experimental formula instead of n=2, 2) and the pertinent reference strength for high strain hardening material like BS4360 steel is ultimate strength, $\sigma_{u}$ and for material like A533B steel is ultimate-flow strength, $\sigma_{u-f}$. The incompatible of the behavior of both experimental J-resistance curves using Rice's formula and CTOD-resistance curves for A533B and BS4360 steel by Gordon, et al., could be corrected using the optimal factor of revision in Rice\`s and the pertinent reference strength in J=$m_{j}$${\times}$$\sigma_{i}$${\times}$CTOD.

Characterization of superplastic material SPF8090 Al-Li for the strain-rate and the temperature (변형률속도와 온도에 따른 SPF8090 Al-Li 초소성재료의 물성치 평가)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.89-93
    • /
    • 1997
  • A superlastic material, aluminum - lithium alloy 8090, were examined with uniaxial tensile test to investigate its thermomechanical behavior. The tests were carried out at the strain-rates ranging from 2${\times}$10-4 to 1${\times}$10-2 and at the temperatures from 48 0$^{\circ}C$ to 540$^{\circ}C$. The experiments produced force-displacement curves which converted to stress-strain curves. From the curves, several important superplastic factor such as strain-rate sensitivity, optimum strain-rate and strength coefficient were obtained.

  • PDF

16 Channel Strain Gauge Measuring Ubiquitous System Development (유비쿼터스 지향의 16채널 스트레인 게이지 계측 시스템 개발)

  • Jang, Soon-Suk;Kim, Kyung-Suk;Won, Yong-Ill;Kim, Dae-Gon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.912-917
    • /
    • 2006
  • A strain gauge weight measuring instrumentation system was designed with RF sensor network facilities. In the sensor module system data conversion and a series of signal processing were totally equipped. 16 strain gauges are incoming sensors and each output of the strain gauge was amplified and filtered for proper analog signal processing. Several measuring instrumentation OP amps and general purposed OP amps were used. 12 bits A/D converters converted analog signals to digital bits and a PIC microprocessor controlled the 16 channels of strain gauges. RF RS232 modules were used for wireless communication between the PIC microprocessor and an Ethernet host far a remote sensor monitoring system development.

Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis

  • Kweon, Hyeong Do;Kim, Jin Weon;Song, Ohseop;Oh, Dongho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.647-656
    • /
    • 2021
  • Knowing a material's true stress-strain curve is essential for performing a nonlinear finite element analysis to solve an elastoplastic problem. This study presents a simple methodology to determine the true stress-strain curve of type 304 and 316 austenitic stainless steels in the full range of strain from a typical tensile test. Before necking, the true stress and strain values are directly converted from engineering stress and strain data, respectively. After necking, a true stress-strain equation is determined by iteratively conducting finite element analysis using three pieces of information at the necking and the fracture points. The Hockett-Sherby equation is proposed as an optimal stress-strain model in a non-uniform deformation region. The application to the stainless steel under different temperatures and loading conditions verifies that the strain hardening behavior of the material is adequately described by the determined equation, and the estimated engineering stress-strain curves are in good agreement with those of experiments. The presented method is intrinsically simple to use and reduces iterations because it does not require much experimental effort and adopts the approach of determining the stress-strain equation instead of correcting the individual stress at each strain point.

A Material Simulation of High-Strain-Rate Deformation with Dislocations and Vacancies (전위 및 공공을 고려한 고변형률 변형에 대한 재료 시뮬레이션)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1306-1313
    • /
    • 2004
  • This paper addresses a theoretical approach to calculate the amount of the stored energy during high strain-rate deformations using atomistic level simulation. The dynamic behavior of materials at high strain-rate deformation are of great interest. At high strain-rates deformations, materials generate heat due to plastic work and the temperature rise can be significant, affecting various properties of the material. It is well known that a small percent of the energy input is stored in the material, and most of input energy is converted into heat. However, microscopic analysis has not been completed without construction of a material model, which can simulate the movement of dislocations and vacancies. A major cause of the temperature rise within materials is traditionally credited to dislocations, vacancies and other defects. In this study, an atomistic material model for FCC such as copper is used to calculate the stored energy.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 등 이축 인장시험에 관한 연구)

  • 김완두;김동진;김완수;이영신
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.95-104
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a pure state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was fumed out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.