• Title/Summary/Keyword: conversion ability

Search Result 263, Processing Time 0.025 seconds

Effects of the Orthographic Representation on Speech Sound Segmentation in Children Aged 5-6 Years (5~6세 아동의 철자표상이 말소리분절 과제 수행에 미치는 영향)

  • Maeng, Hyeon-Su;Ha, Ji-Wan
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.499-511
    • /
    • 2016
  • The aim of this study was to find out effect of the orthographic representation on speech sound segmentation performance. Children's performances of the orthographic representation task and the speech sound segmentation task had positive correlation in words of phoneme-grapheme correspondence and negative correlation in words of phoneme-grapheme non-correspondence. In the case of words of phoneme-grapheme correspondence, there was no difference in performance ability between orthographic representation high level group and low level group, while in the case of words of phoneme-grapheme non-correspondence, the low level group's performance was significantly better than the high level group's. The most frequent errors of both groups were orthographic conversion errors and such errors were significantly more noticeable in the high level group. This study suggests that from the time of learning orthographic knowledge, children utilize orthographic knowledge for the performance of phonological awareness tasks.

Biodesulfurization of Dibenzothiophene and Its Derivatives Using Resting and Immobilized Cells of Sphingomonas subarctica T7b

  • Gunam, Ida Bagus Wayan;Yamamura, Kenta;Sujaya, I. Nengah;Antara, Nyoman Semadi;Aryanta, Wayan Redi;Tanaka, Michiko;Tomita, Fusao;Sone, Teruo;Asano, Kozo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.473-482
    • /
    • 2013
  • The desulfurization ability of Sphingomonas subarctica T7b was evaluated using resting and immobilized cells with dibenzothiophene (DBT), alkyl DBTs, and commercial light gas oil (LGO) as the substrates. The resting cells of S. subarctica T7b degraded 239.2 mg of the initial 250 mg of DBT/l (1.36 mM) within 24 h at $27^{\circ}C$, while 127.5 mg of 2-hydroxybiphenyl (2-HBP)/l (0.75 mM) was formed, representing a 55% conversion of the DBT. The DBT desulfurization activity was significantly affected by the aqueous-to-oil phase ratio. In addition, the resting cells of S. subarctica T7b were able to desulfurize alkyl DBTs with long alkyl chains, although the desulfurization rate decreased with an increase in the total carbon number of the alkylated DBTs. LGO with a total sulfur content of 280 mg/l was desulfurized to 152 mg/l after 24 h of reaction. Cells immobilized by entrapment with polyvinyl alcohol (PVA) exhibited a high DBT desulfurization activity, including repeated use for more than 8 batch cycles without loss of biodesulfurization activity. The stability of the immobilized cells was better than that of the resting cells at different initial pHs, higher temperatures, and for DBT biodesulfurization in successive degradation cycles. The immobilized cells were also easily separated from the oil and water phases, giving this method great potential for oil biodesulfurization.

Performance Analysis of a Combined Power Cycle Utilizing Low-Temperature Heat Source and LNG Cold Energy (저온 열원 및 LNG 냉열을 이용하는 복합 발전 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Oh, Jae-Hyeong;Ko, Hyung-Jong
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.382-389
    • /
    • 2012
  • Power generation cycle using ammonia-water mixture as working fluid has attracted much attention because of its ability to efficiently convert low-temperature heat source into useful work. If an ammonia-water power cycle is combined with a power cycle using liquefied natural gas (LNG), the conversion efficiency could be further improved owing to the cold energy of LNG at $-162^{\circ}C$. In this work parametric study is carried out on the thermodynamic performance of a power cycle consisted of an ammonia-water Rankine cycle as an upper cycle and a LNG cycle as a bottom cycle. As a driving energy the combined cycle utilizes a low-temperature heat source in the form of sensible heat. The effects on the system performance of the system parameters such as ammonia concentration ($x_b$), turbine 1 inlet pressure ($P_{H_1}$) and temperature ($T_{H_1}$), and condenser outlet temperature ($T_{L_1}$) are extensively investigated. Calculation results show that thermal efficiency increases with the increase of $P_{H_1}$, $T_{H_1}$ and the decrease of $T_{L_1}$, while its dependence on $x_b$ has a downward convex shape. The changes of net work generation with respect to $P_{H_1}$, $T_{H_1}$, $T_{L_1}$, and $x_b$ are roughly linear.

Cloning and Characterization of UDP-glucose Dehydrogenase from Sphingomonas chungbukensis DJ77

  • Yoon, Moon-Young;Park, Hye-Yeon;Park, Hae-Chul;Park, Sung-Ha;Kim, Sung-Kun;Kim, Young-Chang;Shin, Mal-shik;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1547-1552
    • /
    • 2009
  • Sphingomonas chungbukensis DJ77 has the ability to produce large quantities of an extracellular polysaccharide that can be used as a gelling agent in the food and pharmaceutical industries. We identified, cloned and expressed the UDP-glucose dehydrogenase gene of S. chungbukensis DJ77, and characterized the resulting protein. The purified UDP-glucose dehydrogenase (UGDH), which catalyzes the reversible conversion of UDP-glucose to UDPglucuronic acid, formed a homodimer and the mass of the monomer was estimated to be 46 kDa. Kinetic analysis at the optimal pH of 8.5 indicated that the $K_m\;and\;V_{max}$ for UDP-glucose were 0.18 mM and 1.59 mM/min/mg, respectively. Inhibition assays showed that UDP-glucuronic acid strongly inhibits UGDH. Site-directed mutagenesis was performed on Gly9, Gly12 Thr127, Cys264, and Lys267. Substitutions of Cys264 with Ala and of Lys267 with Asp resulted in complete loss of enzymatic activity, suggesting that Cys264 and Lys267 are essential for the catalytic activity of UGDH.

Evidence for Existence of a Water-Extractable Anticoagulant in an Earthworm, Lumbricus rubellus

  • Woo, Jeong-Im;Bahk, Yun-Kyung;Yu, Kyoung-Hee;Paik, Seung-R.;Chang, Chung-Soon
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.500-506
    • /
    • 1996
  • We have isolated a water-extracted novel regulator for blood coagulation from an earthworm, Lumbricus rubellus. As a folk remedy, the earthworm has been known to facilitate blood circulation. After complete heat inactivation of endogenous proteases in the earthworm, an anticoagulant(s) was purified through ammonium sulfate fractionation and three consecutive gel permeation chromatography of Sephacryl S-300, Sephadex G-75, and G-150 by measuring activated partial thromboplastin time (APTT) The anticoagulant was further purified to 2,800 fold with a C4 reversed-phase HPLC This activity was stable under heat ($100^{\circ}C$ for 30 min) and acidic conditions (0.4 N HCl). The effects of this partially purified anticoagulant on thrombin were observed with various substrates such as N${\alpha}$-benzoyl-DL-arginine-p-nitroanilide (BApNA), H-D-phenylalanyl-L-pipecoyl-L-arginine-p-nitroanilide (S-2238), N${\alpha}$-p-tosyl-L-arginine methyl ester (TAME), and fibrinogen as a natural substrate. Only TAME hydrolysis, due to an esterase activity of the enzyme, was inhibited among the chromogenic substrates. In addition, the anticoagulant not only inhibited the conversion of fibrinogen to fibrin but also prolonged the fibrin clot formation monitored with the in vitro coagulation test. Based on these observations, we suggest the significance of measuring the ability of antithrombotic drugs to inhibit the esterase activity of thrombin. In this report, it was also shown that the earthworm indeed contained a water-extractable, heat- and acid-stable anticoagulant which could be used as a novel antithrombotic agent.

  • PDF

Synthesis and Photovoltaic Properties of Polymers Based on Cyclopentadithiophene and Benzimidazole Units

  • Song, Su-Hee;Park, Sei-Jung;Kwon, Soon-Cheol;Shim, Joo-Young;Jin, Young-Eup;Park, Sung-Heum;Kim, Il;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1861-1866
    • /
    • 2012
  • The new semiconducting copolymers with 4,4-dialkyl-$4H$-cyclopenta[2,1-$b$:3,4-$b^{\prime}$]dithiophene and 2,2-dimethyl-$2H$-benzimidazole units were synthesized. The fused aromatic rings, such as cyclopentadithiophene (CPDT) unit, can make the polymer backbone more rigid and coplanar, which induces long conjugation length, narrow band gap, and strong intermolecular ${\pi}-{\pi}$ interaction. The stacking ability was controlled through attaching of linear or branched alkyl side chains. The spectra of PEHCPDTMBI and PHCPDTMBI in the solid films show absorption bands with maximum peaks at 401, 759 and 407, 768 nm, and the absorption onsets at 925 and 954 nm, corresponding to band gaps of 1.34 and 1.30 eV, respectively. The devices comprising PHCPDTMBI with $TiO_X$ showed a $V_{OC}$ of 0.39 V, a $J_{SC}$ of 1.14 $mA/cm^2$, and a $FF$ of 0.34, giving a power conversion efficiency of 0.15%. The PHCPDTMBI with linear alkyl chain on CPDT shows good solubility in organic solvent with higher PCE value than that of PEHCPDTMBI.

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

A FSK Radio-telemetry System for Monitoring Vital Signs in UHF Band (UHF 대역 FSK에 의한 생체신호 무선 전송장치의 개발)

  • Park D.C.;Lee H.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.255-260
    • /
    • 2000
  • This paper presents a radio-telemetry patient monitor. which is used for intensive cal?e units. emergency and surgical operation rooms to monitor continuously patients' vital signs. The radio-telemetry patient monitor consists of a vital sign acquisition unit. wireless data transmission units and a vital sign-monitoring unit. The vital sign acquisition unit amplifies biological signals, performs analog signal to serial digital data conversion using the one chip micro-controller. The converted digital data is modulated FSK in UHF band using low output power and transmitted to a remote site in door. In comparison with analog modulation. FSK has major advantages to improve performance with respect to noise resistance with fower error and the potential ability to process and Improve quality of the received data. The vital sign-monitoring unit consists of the receiver to demodulate the modulated digital data, the LCD monitor to display vital signs continuously and the thermal head printer to record a signal.

  • PDF

Dunaliella salina as a Microalgal Biomass for Biogas Production (바이오 가스 생산을 위한 미세조류 바이오매스로서의 Dunaliella salina)

  • Jeon, Nayeong;Kim, Daehee;An, Junyeong;Kim, Taeyoung;Gim, Geun Ho;Kang, Chang Min;Kim, Duk Jin;Kim, Si Wouk;Chang, In Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.282-285
    • /
    • 2012
  • In this study, the ability of Chlorella vulgaris and Dunaliella salina to use biomass resources for anaerobic digestive biogas production was examined. The differences in cell wall structure pretreatments affecting the yield of soluble products showed that D. salina is a better candidate for biogas production than C. vulgaris. There was no significant difference between pretreated and non-pretreated D. salina in terms of methane production yield by inocula obtained from anaerobic digestion systems. Therefore, D. salina is a suitable algal biomass for biogas production due to its high biomass productivity, simple pretreatment needs, and easy conversion to biogas.

Stabilization Characteristics of the Pyrolyzed Oil from Waste Lubricating Oil (폐윤활유 열분해유의 안정화 특성 연구)

  • Kim, Seung-Soo;Kim, Young-Seok;Chun, Byung-Hee;Park, Chan Jin;Yoon, Wang Lai;Kim, Sung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1055-1061
    • /
    • 2000
  • The kinetics of tar formation has been studied experimentally and modeled mathematically for waste lubricating oil after pyrolyzed at batch reactor. And stabilization of pyrolyzed oil has been studied. A combination of series and parallel reaction was assumed for the mechanism of tar formation. From the proposed kinetic model, pyrolyzed oil to tar was found to be rate limiting step for tar formation. It was found that the fly ash and coke had the ability to remove materials of tar formation and to protect oxidation of pyrolyzed oil.

  • PDF