• Title/Summary/Keyword: convergence properties

Search Result 1,908, Processing Time 0.033 seconds

The Influence of the Commercial Flame Retardant to the Physical and Chemical Properties of Dancheong Pigments (시판용 방염제 도포에 의한 단청안료의 물리화학적 변화 연구)

  • Lee, Han Hyoung;Kim, Jin Gyu;Lee, Hwa Soo;Lee, Ha Rim;Chung, Yong Jae;Kim, Do Rae;Han, Gyu Seong
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.249-259
    • /
    • 2016
  • Effect of the flame retardants on Dancheong is studied in the present work. Two kinds of flame retardants were applied on Dancheong specimens and compared with control groups on which distilled water was applied instead of the flame retardants. The flame retardants enhanced the hygroscopic property of the surface of Dancheong. Furthermore, the added flame retardants reacted with oyster shell white($CaCO_3$) and lead red($Pb_3O_4$), producing new chemical compounds like Calcium phosphate tribasic and Lead Phosphates which make the painted layer of Dancheong dissolving and whitening over certain period of time. When applied in excessive amount and exposed in repetitive wet and dry condition, especially, they aggravate the surface problems significantly. These results will provide a good reference on the study of the discoloring/whitening effect of Dancheong layers at many traditional wooden building in Korea.

The Effects of Humidity Control Capability and Removal Toxic Gases of Activated Carbon to the Display Environment of Cultural Properties (문화재 전시 공간에 대한 활성탄의 습도 제어 및 유해가스 제거 효과 연구)

  • Kang, Sae Rom;Choi, Yu Ri;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.235-241
    • /
    • 2014
  • In this study, we are trying to verify humidity control capability of the exhibition environment of cultural property by measuring adsorption and desorption performance, the control ability of harmful substances by the adsorption experiments of harmful gases. In the experiment of adsorption and desorption performance, in the low humidity area, Artsorb desorbed overwhelmingly more than activated carbon whereas activated carbon absorbed more. Adsorption speed was faster slightly in Artsorb absorption speed was similar in both. In the middle humidity area, absorption by artsorb was slightly more and desorption was similar in both so characteristic of Artsorb didn't appear. Also, Adsorption speed was faster in activated carbon but in the process of desorption, the speed of Artsorb was faster. In adsorption experiment of harmful substances, the concentration in the environment with activated carbon was lower than one with Artsorb, but the difference appeared small. And as a result of observation of the difference in concentration due to adsorption of harmful gas by the change in the metal specimen, the most change was shown in lead specimen and the color difference between the lead specimens of the activated carbon and Artsorb appeared greatly.

The Impact of Underlying Attributes of Design Team Members on the Group Creativity (디자인팀 구성원의 내재적 속성이 그룹창의성에 미치는 영향에 관한 연구)

  • Cho, Hee-Young;Chung, Kyung-Won
    • Archives of design research
    • /
    • v.19 no.5 s.67
    • /
    • pp.43-54
    • /
    • 2006
  • Creativity is an essential ability for a successful design task, mainly because design is an activity creating something new. As the sphere of design has expanded and become complex, the design task goes beyond an individual designer's capability. Therefore, it is necessary to organize a design team consisting of various team members with diverse expertises. The aim of this study is to find out the impact of fundamental attributes of members on the group creativity in order to establish a guideline for building a creative design team. Heterogeneous teams and homeogenous teams were created according to three main factors of group creativity namely, personality, field and experience. The group creativity of each team were evaluated through protocol analysis of design activities as well as the comparison of problem solving processes and outputs. It was identified that the impact of design teams on the group creativity was distinctively different in four phases of the design process (preparation, divergence, convergence, and execution) regarding creativity properties such as fluency, elaboration, originality, usefulness. Based on these findings, a schematic model for building a design team in order to enhance the group creativity by composing the most appropriate team members for each phases of the design process was developed.

  • PDF

Mechanical Property Improvement of the H13 Tool Steel Sculptures Built by Metal 3D Printing Process via Optimum Conditions (금속 3D 프린팅 공정 최적화를 통한 H13 공구강 조형체의 기계적 특성 향상)

  • Yun, Jaecheol;Choe, Jungho;Lee, Haengna;Kim, Ki-Bong;Yang, Sangsun;Yang, Dong-Yeol;Kim, Yong-Jin;Lee, Chang-Woo;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.195-201
    • /
    • 2017
  • In this study, H13 tool steel sculptures are built by a metal 3D printing process at various laser scan speeds. The properties of commercial H13 tool steel powders are confirmed for the metal 3D printing process used: powder bed fusion (PBF), which is a selective laser melting (SLM) process. Commercial H13 powder has an excellent flowability of 16.68 s/50 g with a Hausner ratio of 1.25 and a density of $7.68g/cm^3$. The sculptures are built with dimensions of $10{\times}10{\times}10mm^3$ in size using commercial H13 tool steel powder. The density measured by the Archimedes method is $7.64g/cm^3$, similar to the powder density of $7.68g/cm^3$. The hardness is measured by Rockwell hardness equipment 5 times to obtain a mean value of 54.28 HRC. The optimum process conditions in order to build the sculptures are a laser power of 90 W, a layer thickness of $25{\mu}m$, an overlap of 30%, and a laser scan speed of 200 mm/s.

Improvement of the Adhesion Properties between Aluminum and a Parylene-C Film by Using the Duoplasmatron Ion Source (Duoplasmatron Ion Source를 이용한 Parylene과 Al의 접착력 향상에 관한 연구)

  • Choi, Sung-Chang
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.78-85
    • /
    • 2012
  • In order to improve the adhesion between poly-monochloro-para-xylylene (Parylene-C) film and Aluminum thin film, the surface of Parylene-C film was irradiated by ${O_2}^+$ and $Ar^+$ ion beam generated by duoplamatron ion source. The ion dose of $Ar^+$ and ${O_2}^+$ was changed from $5{\times}10^{14}$ to $1{\times}10^{17}/cm^2$ and the ion beam energy was 1 kV. Contact angles of water on Parylene-C modified by $Ar^+$ and ${O_2}^+$ ion irradiation decreased from $78^{\circ}$ to around $17^{\circ}$, and $9^{\circ}$, respectively. X-ray photoelectron spectroscopy analysis shows that the hydrophilic groups were formed on the surface of Parylene-C by chemical reaction between the unstable chains induced by the ion irradiation and oxygen ions or residual oxygen gas. The hydrophilic groups were identified as C-O bond, C=O bond and (C=O)-O bond. The cross cut tape test which was applied to characterize the adhesion between Al thin film and Parylene-C film modified by ${O_2}^+$ ions irradiation shows that the adhesion strength was improved as increasing ion dose.

The Correlation Analysis between Dynamic Cone Penetration Test and Plate Loading Test Results for Evaluation of Dam Conditions (제체 상태 평가를 위한 동적 콘 관입시험과 평판재하시험 결과의 상관관계 분석)

  • Jung, Young-Hoon;Kim, Seongmin;Lim, Jeong-yeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.33-38
    • /
    • 2018
  • The internal erosion due to poor compaction of the material was the main cause of collapse of the embankment in Korea. The assessment of the compaction state of the dam body was a very important check in the safety diagnosis of the embankment. In this study, the correlation between dynamic cone penetration test and plate loading test which is the most typical compaction evaluation technique was analyzed to verify the applicability of the dynamic cone penetration test in evaluating the compaction state of the dam body. The standard penetration tests were carried out six times to define soil properties and depth of the test site. The spatial distributions were obtained by the Kriging method after 15 times of plate loading tests and 47 times of dynamic cone penetration tests. The Pearson correlation coefficient between the spatial distribution of the plate loading test and the dynamic cone penetration test spatial distribution at the constant penetration depth was calculated. The load distribution in the plate loading test and the blow counts at penetration depths of 5 cm, 10 cm and 15 cm in the dynamic cone penetration test showed a weak positive correlation.

The properties of AlGaN epi layer grown by HVPE (HVPE에 의해 성장된 AlGaN epi layer의 특성)

  • Jung, Se-Gyo;Jeon, Hun-Soo;Lee, Gang-Seok;Bae, Seon-Min;Yun, Wi-Il;Kim, Kyoung-Hwa;Yi, Sam-Nyung;Yang, Min;Ahn, Hyung-Soo;Kim, Suck-Whan;Yu, Young-Moon;Cheon, Seong-Hak;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • The AlGaN layer has direct wide bandgaps ranging from 3.4 to 6.2 eV. Nowadays, it is becoming more important to fabricate optical devices in an UV region for the many applications. The high quality AlGaN layer is necessary to establish the UV optical devices. However, the growth of AlGaN layer on GaN layer is difficult due to the lattice mismatch and difference thermal expansion coefficient between GaN layer and AlGaN layer. In this paper, we attempted to grow the LED structure on GaN template by mixed-source HVPE method with multi-sliding boat system. We tried to find the optical and lattice transition of active layer by control the Al content in mixed-source. For the growth of epi layer, the HCl and $NH_3$ gas were flowed over the mixed-source and the carrier gas was $N_2$. The temperature of source zone and growth zone was stabled at 900 and $1090^{\circ}C$, respectively. After the growth, we performed the x-ray diffraction (XRD) and electro luminescence (EL) measurement.

The effects of Mg impurities on β-Ga2O3 thin films grown by MOCVD (MOCVD로 성장한 β-Ga2O3 박막에 대한 Mg 불순물 주입 효과)

  • Park, Sang Hun;Lee, Seo Young;Ahn, Hyung Soo;Yu, Young Moon;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • In this study, we investigated the impurity effect of $Ga_2O_3$ doped thin film by simple doping method using Mg acetate solution. Both undoped $Ga_2O_3$ thin films and Mg-doped $Ga_2O_3$ thin films were grown on Si substrates at 600 and $900^{\circ}C$ for 30 minutes by means of a customized MOCVD method. As a result of the surface analysis, there were no obvious morphological differences by Mg impurity implantation. The surface of the thin film grown at $900^{\circ}C$ was rougher than those grown at $600^{\circ}C$ and polycrystallization was achieved. As a result of the optical property analysis, in the case of the doped sample, the overall emission peak was red shifted and the UV radiation intensity was increased. As a result of the I-V curve, the leakage current of the $600^{\circ}C$ growth thin film decreased by the Mg impurity and the photocurrent of the growth thin film of $900^{\circ}C$ increased.

Physical and Chemical Properties of Cement Mortar with Gamma-C2S

  • Lee, Sung-Hyun;Kim, Kyungnam;Mabudo, Mabudo;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.194-199
    • /
    • 2016
  • Presently, for the cement industry, studies that seek to reduce $CO_2$, because of the development of the plastic industry and demand for reduction of energy use, have been actively conducted among them, studies attempting to use Gamma-$C_2S({\gamma}-C_2S)$ to fix $CO_2$ have been actively conducted. The ${\gamma}-C_2S$ compound has an important function in reacting to $CO_2$ and stiffening through carbonatization in the air. The ${\gamma}-C_2S$ compound, reacting to $CO_2$ in the air, generates $CaCO_2$ within the pore structure of cement materials and densifies the pore structure this leads to an improvement of the durability and to the characteristic of resistance against neutralization. Therefore, in this experiment, in order to synthesize ${\gamma}-C_2S$, limestone sludge and waste foundry sands are used these materials are plasticized for 30 or 60 minutes at $1450^{\circ}C$, and are prevented from being cooled in the temperature range of $30{\sim}1000^{\circ}C$ when they are about to be cooled. XRD analysis and XRF analysis are used to determine the effects of this process on ${\gamma}-C_2S$ synthesization, the temperature at which a thing is plasticized, and the conditions for cooling that obtain in the plasticized clinker also, in order to confirm the $CO_2$ capture function, analysis of the major hydration products is conducted through an analysis of carbonatization depth and compressive strength, and through MIP analysis and XRD Rietveld analysis. As a result of these analyses, it is found that when ${\gamma}-C_2S$ was synthesized, the clinker that was plasticized at $1450^{\circ}C$ for one hour demonstrated the highest yield rate the sample with which the ${\gamma}-C_2S$ was mixed generated $CaCO_3$ when it reacted with $CO_2$ therefore, carbonatization depth and porosity were reduced, and the compressive strength was increased.

The Effect of Glass Fabric Separator Elongation on Electric Property in Structural Battery (유리섬유 분리막 인장으로 인한 구조전지의 전기적 물성 변화)

  • Shin, Jae-Sung;Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2017
  • Structural battery has been researched extensively to combine the functions of the battery and structure without gravimetric or volumetric increments compared to their individual components. The main idea is to employ carbon fabric as the reinforcement and electrode, glass fabric as the separator, and solid-state electrolyte which can transfer load. However, state-of-the-art solid-state electrolytes do not have sufficient load carrying functionality and exhibiting appropriate ion conductivity simultaneously. Therefore, in this research, a system which has both battery and load carrying capabilities using glass fabric separator and liquid electrolyte was devised and tested to investigate the potential and feasibility of this structural battery system and observe electric properties. It was observed that elongating separator decreased electrical behavior stability. A possible cause of this phenomenon was the elongated glass fabric separator inadequately preventing the penetration of small particles of the cathode material into the anode. This problem was verified additionally by using a commercial separator. The characteristic of the glass fabric and the interface between the electrode and glass fabric needed to be further studied for the realization of such a load carrying structural battery system.