• Title/Summary/Keyword: convergence ball

Search Result 123, Processing Time 0.027 seconds

Synthesis of cathode material for sodium ion batteries using dry vibration milling (건식 진동밀을 이용한 나트륨이온전지 양극활물질 합성)

  • Lee, Yeon-Woo;Kim, Han-Jun;Kang, Yeonhui;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.70-74
    • /
    • 2017
  • Two milling methods, dry vibration milling and wet ball milling, were used to prepare $Na_{2/3}(Ni_{1/3}Mn_{2/3})O_2$ powders as a cathode material for sodium ion batteries. The morphology and electrochemical property of the two powders with different milling processes were compared to each other. The particle size is less than $1{\mu}m$ in the dry vibration milled powder, while lots of larger particles than $1{\mu}m$ were found in the wet ball milled one. The single phase of $Na_{2/3}(Ni_{1/3}Mn_{2/3})O_2$ was obtained in the temperature range of $875{\sim}900^{\circ}C$. The discharge capacity and discharge voltage of the powder prepared by the dry process were higher than those of one prepared by the wet process.

Measurement of Tensile Relaxation of Leather for Shoe Uppers (구두 상부용 가죽의 인장 회복량 측정실험)

  • Lee, Jeongmin;Bae, Mincheol;Kim, Yungwoo;Choi, Seongmyung;Baek, Sungkwan;Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.1
    • /
    • pp.7-10
    • /
    • 2017
  • In general, the shoe stretcher is utilized to stretching the leather of shoe upper in the longitudinal direction. In the capstone design class, we tried to make a shoe leather stretcher for the ball of foot. Since a natural cow leather was recovered in length according to relaxation time after stretched, it was difficult to predict the initial amount of set up of stretching. In this paper, tensile and relaxation experiments were conducted in order to predict the amount of initial stretching for appropriate tensile length. Apparatus of leather stretching was designed and strains of leather were measured according to relaxation times of 12, 18, 24 hours after stretching of 24 hours. It was revealed that the ratio of the final relaxed strain and the initial applied strain was about 0.404 with R-square of 0.990 for a shoe cow leather.

A Study on Processing Shape and Surface Roughness of Aluminum Alloy by MCT Processing (MCT 가공을 통한 알루미늄 합금의 표면 거칠기와 가공형상에 관한 연구)

  • Kim, Gue-Tae;Kim, Won-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.3
    • /
    • pp.85-93
    • /
    • 2013
  • The MCT has been most extensively used in the machining. In particular, the ball endmill has been mainly adopted for finishing on the free- form surface. The advancement of CAD/CAM software has made it possible to develop various cutting pattern methods and to create diverse tool routes. Therefore, the current research made an attempt to find the optimal cutting pattern among the seven cutting patterns (i.e., Follow Periphery, Zig, Zig Zag, Concentric Zig, Concentric Zig Zag, Radial Zig, Radial Zig Zag) when aluminium 6000 series were machined by the ball endmill. The optimal pattern was found by comparing different shapes and surface roughness produced by the seven patterns. The current research found that each cutting pattern produced its own unique geometric features on the machined surface. It was found that the Radial Zig cutting pattern produced the lowest roughness on the flat surfaces. The Radial Zig Zag cutting pattern was found to produce the most accurate free-form surface. Finally, the most efficient cutting pattern in terms of machining time turned out to be the Follow Periphery.

Wet preparation of calcium phosphates from aqueous solutions

  • Lee, Byeong Woo;Hong, Il Gok
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.655-659
    • /
    • 2019
  • Calcium phosphates such as HA (hydroxyapatite), β-TCP (tricalcium phosphate) and biphasic HA/β-TCP, were synthesized by wet chemical precipitation in aqueous solution combined with ball milling process. Nanosize powders of the calcium phosphates were synthesized using Ca(OH)2 and H3PO4. The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67), ball milling process and post heat-treatment on the phase evolution behavior of the powders were investigated. The phase of resulting powder was controllable by adjusting the initial Ca/P ratio. HA was the only phase for as-prepared powders in both cases of Ca/P ratios of 1.50 and 1.67. The single HA phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat-treatment range. Pure β-TCP and biphasic calcium phosphate (HA/β-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat-treated above 700 ℃. The β-TCP phase has appeared on the pre-existing DCPD (dicalcium phosphate dihydrate) and/or HA phase. Dense ceramics having translucency were obtained at a considerably lower sintering temperature. The modified process offered a fast, convenient and economical route for the synthesis of calcium phosphates.

Fabrication of CNT/MgCl2-Supported Ti-based Ziegler-Natta Catalysts for Trans-selective Polymerization of Isoprene

  • Cao, Lan;Zhang, Xiaojie;Wang, Xiaolei;Zong, Chengzhong;Kim, Jin Kuk
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.158-167
    • /
    • 2018
  • In this study, in-situ trans-selective polymerization of isoprene was carried out using titanium-based Ziegler-Natta catalysts. The catalysts were prepared by high-energy ball milling. Individually Large-inner-diameter carbon nanotubes (CNTL), and hydroxylated carbon nanotubes (CNTOH), along with magnesium chloride ($MgCl_2$) were used as the carriers for the catalysts. The optimum ball-milling time for preparing the $CNT/MgCl_2/TiCl_4$ Ziegler-Natta catalysts was 4 h. The $CNTOH/MgCl_2/TiCl_4$ catalyst showed a higher efficiency than that of the $CNTL/MgCl_2/TiCl_4$ catalyst, based on the rate of polymerization. The effects of the CNT-filler type on the isoprene polymerization behaviors and polymer properties were investigated. The morphologies of the trans-1,4-polyisoprene (TPI)/CNT and TPI/CNTOH nanocomposites exhibited a tube-like shape, and the CNTL and CNTOH fillers were well dispersed in the TPI matrix. In addition, the thermal stability of TPI significantly increased upon the introduction of a small amount of both CNTL/CNTOH fillers (0.15 wt%), owing to the satisfactory dispersion of the CNTL/CNTOH in the TPI matrix.

Stabilization Position Control of a Ball-Beam System Using Neural Networks Controller (신경회로망 제어기을 이용한 볼-빔 시스템의 안정화 위치제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.3
    • /
    • pp.35-44
    • /
    • 1999
  • This research aims to seek active control of ball-beam position stability by resorting to neural networks whose layers are given bias weights. The controller consists of an LQR (linear quadratic regulator) controller and a neural networks controller in parallel. The latter is used to improve the responses of the established LQR control system, especially when controlling the system with nonlinear factors or modelling errors. For the learning of this control system, the feedback-error learning algorithm is utilized here. While the neural networks controller learns repetitive trajectories on line, feedback errors are back-propagated through neural networks. Convergence is made when the neural networks controller reversely learns and controls the plant. The goals of teaming are to expand the working range of the adaptive control system and to bridge errors owing to nonlinearity by adjusting parameters against the external disturbances and change of the nonlinear plant. The motion equation of the ball-beam system is derived from Newton's law. As the system is strongly nonlinear, lots of researchers have depended on classical systems to control it. Its applications of position control are seen in planes, ships, automobiles and so on. However, the research based on artificial control is quite recent. The current paper compares and analyzes simulation results by way of the LQR controller and the neural network controller in order to prove the efficiency of the neural networks control algorithm against any nonlinear system.

  • PDF

Effects of Pyrite (FeS2) Particle Sizes on Electrochemical Characteristics of Thermal Batteries (열전지의 전기화학적 특성에 미치는 황철석(FeS2) 입자크기의 영향)

  • Choi, Yusong;Yu, Hye-Ryeon;Cheong, Haewon;Cho, Sungbaek;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.161-166
    • /
    • 2014
  • In this study, effects of pyrite ($FeS_2$) particle sizes on the electrochemical characteristics of thermal batteries are investigated using unit cells made of pulverized pyrite by ball-milling. At $450^{\circ}C$ unit cell discharge test, the electrochemical capacity of $1.46{\mu}m$ pyrite-cell largely increases compared to $98.4{\mu}m$ pyrite-cell, and their internal resistances also decrease. These results are attributed to the increase in the active reaction area of pyrite by ball milling. However, at $500^{\circ}C$ unit cell discharge test, a $1.46{\mu}m$ pyrite cell shows lower internal resistance than that of $98.4{\mu}m$ pyrite cell only at Z-phase region ($FeS_2{\rightarrow}Li_3Fe_2S_4$). After that, a $1.46{\mu}m$ pyrite cell shows a decrease in the cell voltage and an rapid increase of the internal resistance in J-phase region ($Li_3Fe_2S_4{\rightarrow}LiFe_2S_4$) is observed compared to those of $98.4{\mu}m$ pyrite cell. It can be concluded that at the higher temperature, the thermally unstable pulverized pyrite is decomposed thermally as well as self discharged, simultaneously, which causes the higher resistance and lower capacity at $500^{\circ}C$ in J-phase than that of $98.4{\mu}m$ pyrite cell.

Improvement of Mold-Sculptured Surface Quality Based on Tool Shape and Posture (공구 형상 및 자세에 따른 금형 자유곡면 가공품질 향상에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.100-106
    • /
    • 2021
  • This paper presents a study on the improvement of the machining quality of sculptured-surfaces of molds according to the shape and posture of the tool. In the existing 3-axis machining, the methods using the ball end-mill and radius end-mill were analyzed for various cutting patterns and compared with those of the 5-axis machining. It was observed that the 5-axis machining using a ball end-mill obtained the finest surface roughness, and for the 3-axis machining, the optimal results were obtained for the one-way machining using a radius end-mill.

Design of an Adaptive Gripper with Single Linear Actuator (단일 직선 구동형 적응형 그리퍼 설계)

  • Kim, Giseong;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.313-321
    • /
    • 2020
  • In this paper, two types of linear actuation methods for the previously proposed adaptive gripper are presented, which includes actual parallelogram inside a five-bar mechanism and has the advantages of smaller actuation torque and larger stroke over the commercial adaptive gripper by RobotiQ. The forward/inverse kinematics and statics analyses for two types of linear actuations are derived. From the inverse kinematics and statics analyses, linear actuation type I is selected and the gripper prototype is designed.

Finite Element Analysis of Pivot Stiffness for Tilting Pad Bearings and Comparison to Hertzian Contact Model Calculations (유한 요소 해석을 통해 계산된 틸팅 패드 베어링의 피봇 강성과 Hertzian 접촉 모델 해석 결과 비교)

  • Lee, Tae Won;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.205-211
    • /
    • 2014
  • Recent studies emphasize the importance of pivot stiffness in the analysis of tilting pad bearings (TPBs). The present paper develops a finite element model of the pad pivot and compares the predicted pivot stiffness to the results of Hertzian contact model calculations. Specifically, a finite element analysis generates tetrahedral mesh models with ~40,000 nodes for a ball-socket pivot and ~50,000 nodes for a rocker-back pivot. These models assume a frictionless boundary condition in the contact area. Increasing the applied loads on the pad in conjunction with increasing time steps ensures rapid convergence during the nonlinear numerical analysis. Predictions are performed using the developed finite element model for increasing the differential diameters between the pad pivot (or ball) and the bearing housing (or socket). The predictions show that the pivot contact area increases with decreasing differential diameters and increasing applied loads. Further, the maximum deformation occurring at the pivot center increases with increasing differential diameters and increasing applied loads. The pivot stiffness increases nonlinearly with decreasing differential diameters and increasing applied loads. Comparisons of results of the developed finite element model to those of Hertzian contact model calculations assuming a small contact area show that the latter model underestimates the pivot stiffnesses predicted by the finite element models of the ball-socket and rocker-back pivots, particularly for small differential diameters. This result implies the need for cautionduring the design of pivot stiffness by the Hertzian contact model.