• Title/Summary/Keyword: conventional water treatment

Search Result 567, Processing Time 0.027 seconds

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.33-41
    • /
    • 2005
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard $k-{\epsilon}$ Model and a computational fluid dynamics (CFD) simulation program-FLUENT. The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floe formation at conventional water treatment plants in Korea. As a result of the CED solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type-II (Angle $15{\sim}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

Characteristics of the sonolytic reaction of refractory aromatic compounds in aqueous solution by ultrasound (초음파에 의한 수중의 난분해성 방향족화합물의 반응특성)

  • Sohn, Jong-Ryueul;Mo, Se-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • In this study, the series of ultrasonic irradiation for removal of refractory aromatic compounds has been selected as a model reaction in the batch reactor system in order to obtain the reaction kinetics. The products obtained from the ultrasonic irradiation were analysed by GC and GC/MSD. The decomposition of benzene produced toluene, phenol, and C1-C4 compounds, while the intermediates during the ultrasonic irradiation of 2,4-Dichlorophenol(DCP) were phenol, HCl, catechol, hydroquinone, and benzoquinone. It was found that more than 80% of benzene, and 2,4-DCP solutions were removed within 2 hours in all reaction conditions. The reaction order in the degradation of these three compounds was verified as pseudo-zero or first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as $H{\cdot}$ and $OH{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it appeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory compounds which are difficult to be decomposed by the conventional methods.

Development and Application of Modified Intermittently Aeration mode for Advanced Phase Isolation Ditch (APID) process at Winter Season (APID공정 내 동절기 개량형 간헐포기 운전모드 적용 및 개발)

  • Kwak, Sung-Keun;An, Sang-Woo;Chung, Mu-Keun;Park, Jae-Ro;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.872-878
    • /
    • 2009
  • Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to develop and apply the modified intermittently aeration mode as process control conditions for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent $BOD_5$, SS, T-N, and T-P concentrations were 6.3, 4.5, 10.0, and 1.3 mg/L. The modified mode decreased the nitrification capability more than the conventional mode in the application period. Nitrate in the anaerobic condition can have a negative effect on biological phosphorus removal. In the decreasing nitrate levels, the modified mode increased the biological ability of removal phosphorus more than the conventional mode in this study. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

Evaluation of Excess Sludge Reduction in the OSA Process using Kinetic Parameter and Mass Balance (동역학계수 및 물질수지를 이용한 OSA공정의 잉여슬러지 감량능 평가)

  • Nam, Duck-Hyun;Jang, Hyung-Suk;Ha, Kuem-Ryul;Kim, Joon-Kyu;Ju, Jae-Young;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.530-538
    • /
    • 2009
  • The Oxic-Settling-Anaerobic (OSA) treatment process, a modified Conventional Activated Sludge (CAS) process, was developed for the purpose of sludge reduction. The insertion of a sludge holding tank into a sludge return line, an anaerobic reactor, forming an OSA process, may provide a cost-effective way of reducing excess sludge production during a process. The OSA process was evaluated for its sludge reduction ability by kinetic parameter and mass balance, with an observed excess sludge reduction of 63.5%, as $P_{X.VSS}$, compared with the conventional activated sludge process.

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.267-274
    • /
    • 2004
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard k-$\epsilon$ Model and a computational fluid dynamics (CFD) simulation program- FLUENT The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floc formation at conventional water treatment plants in Korea. As a result of the CFD solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type- II (Angle $15{\~}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

  • PDF

Effect of membrane deformation on performance of vacuum assisted air gap membrane distillation (V-AGMD)

  • Kim, Yusik;Choi, Jihyeok;Choi, Yongjun;Lee, Sangho
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • Vacuum-assisted air gap membrane distillation (V-AGMD) has the potential to achieve higher flux and productivity than conventional air gap membrane distillation (AGMD). Nevertheless, there is not much information on technical aspects of V-AGMD operation. Accordingly, this study aims to analyze the effect of membrane deformation on flux in V-AGMD operation. Experiments were carried out using a bench-scale V-AGMD system. Statistical models were applied to understand the flux behaviors. Statistical models based on MLR, GNN, and MLFNN techniques were developed to describe the experimental data. Results showed that the flux increased by up to 4 times with the application of vacuum in V-AGMD compared with conventional AGMD. The flux in both AGMD and V-AGMD is affected by the difference between the air gap pressure and the saturation pressure of water vapor, but their dependences were different. In V-AGMD, the membranes were found to be deformed due to the vacuum pressure because they were not fully supported by the spacer. As a result, the deformation reduced the effective air gap width. Nevertheless, the rejection and LEP were not changed even if the deformation occurred. The flux behaviors in V-AGMD were successfully interpreted by the GNN and MLFNN models. According to the model calculations, the relative impact of the membrane deformation ranges from 10.3% to 16.1%.

Characteristics of residuals from the 2nd-stage microfiltration in a dual membrane process (침지식 2단 막여과 고도 정수처리 시스템의 최종배출수 특징)

  • Lee, Seung Ryul;Kweon, Ji Hyang;Hur, Hyung Woo;Yeon, Kyeong Ho;Park, Ki Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • Low-pressure membrane processes have been extensively expanded their applications to drinking water production in a few decades. As a capacity of a membrane plant becomes greater in recent years, proper methods to increase water production as well as to treat residuals have drawn great attention. A possible treatment option for the better water production is to apply a dual membrane system. The second stage microfiltration was installed and operated for approximately six months. The residuals from the two stage microfiltration were investigated to learn their characteristics in settling and dewatering processes. The settlability of the membrane residuals were greatest at the SS concentration of approximately 15000mg/L. The proper dose of the polyelectrolytes for filterability were obtained in the range of 0.5~1%. In the dosage range, the water contents of the membrane residuals were greater but the SRF were lower than the residual from the conventional process.

Treatment Study of the Turbid Water by High-Speed Synthetic Fiber Filter System (합성섬유 여재를 충진한 고속여과장치에 의한 탁수처리에 관한 연구)

  • Park, Kisoo;Cheng, Jing;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.262-271
    • /
    • 2015
  • Laboratory study was undertaken to pursue the filter performance of a micro-filter module employing highly porous fiber media under a high filtration rate (over 1,500 m/day), faster than that of any conventional filter process. The effects of filtration rate, head loss, raw water turbidity, and filter aid chemicals on filter performance were analyzed. In spite of the extremely high filtration rate, the filter achieved an attractive efficiency, reducing the raw water turbidity by over 80%. As with other filter systems, the filter aid used (PAC in this study) greatly affected the performance of this particular fiber filter. Long term repetitive runs were additionally carried out to confirm the reproducibility of the filter performance. Finally, a comparison was carried out with other high rate filter systems which are either being tested for use in experimental studies, or are already commercially available.

Removal of Algogenic Organic Matter in Drinking Water Treatment Process (정수처리공정에서 조류유래 유기물질의 제거)

  • Park, Se-Jin;Cha, Il-Kwon;Yoon, Tai-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.377-384
    • /
    • 2005
  • Algae causes not only the eutrophication of lake, but also the deterioration of drinking water process. Especially, algogenic organic matters(AOM) are assumed as disinfection by-products(DBPs) precursors like humic and fulvic acids. In this study, it was investigated the characteristics changes of algogenic organic matter(AOM) by prechlorination and coagulation treatment. Evaluation of enhanced coagulation and applicability of UV oxidation process were also evaluated as the drinking water treatment system for the eutrophicated water source. prechlorination was effective process for algae removal but caused releasing of dissolved organic matter(DOC) into water due to the destruction of algae's cell. In coagulation treatment with Fe(III) coagulant, reaction pH is an important factor for the removal of AOM and triholomathanes(THMs). At pH 5, removal efficiency of DOC and THMs were dramatically improved by 50% and 28%, respectively, in comparison with the conventional coagulation treatment at about pH 7. Photo-Fenton($UV/H_2O_2/Fe^{3+}$) process among the UV oxidations is the most effective system to remove AOM, but its removal efficiency was lower than that of enhanced coagulation treatment at pH 5.

Potential of Contaminant Removal Using a Full-Scale Municipal Water Treatment System with Adsorption as Post-Treatment (실 규모 물 처리 공정 및 후속 흡착 처리에 의한 오염원 제거 잠재성 평가)

  • Haeil Byeon;Geonhee Yeo;Anh-Hong Nguyen;Youngwoong Kim;Donggun Kim;Taehun Lee;Seolhwa Jeong;Younghoa Choi;Seungdae Oh
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.167-177
    • /
    • 2024
  • This study aimed to assess the efficacy of an adsorption process in removing organic matter and micropollutant residuals. After a full-scale water circulation system, the adsorption process was considered a post-treatment step. The system, treating anthropogenically impacted surface waters, comprises a hydro-cyclone, coagulation, flocculation, and dissolved air flotation unit. While the system generally maintained stable and satisfactory effluent quality standards over months, it did not meet the highest standard for organic matter (as determined by chemical oxygen demands). Adsorption experiments utilized two granular activated carbon types, GAC 830 and GCN 830, derived from coal and coconut-shell feedstocks, respectively. The assessment encompassed organic materials along with two notable micropollutants: acetaminophen (APAP) and acid orange 7 (AO7). Adsorption kinetics and isotherm experiments were conducted to determine adsorption rates and maximum adsorption amounts. The quantitative findings derived from pseudo-second-order kinetics and Langmuir isotherm models suggest the effectiveness of the adsorption process. The findings of this study propose the potential of employing the adsorption process as a post-treatment to enhance the treatment of contaminants that are not satisfactorily treated by conventional water circulation systems. This enhancement is crucial for ensuring the sustainability of urban water cycles.