Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.1.051

Effect of membrane deformation on performance of vacuum assisted air gap membrane distillation (V-AGMD)  

Kim, Yusik (School of Civil and Environmental Engineering, Kookmin University)
Choi, Jihyeok (School of Civil and Environmental Engineering, Kookmin University)
Choi, Yongjun (School of Civil and Environmental Engineering, Kookmin University)
Lee, Sangho (School of Civil and Environmental Engineering, Kookmin University)
Publication Information
Membrane and Water Treatment / v.13, no.1, 2022 , pp. 51-62 More about this Journal
Abstract
Vacuum-assisted air gap membrane distillation (V-AGMD) has the potential to achieve higher flux and productivity than conventional air gap membrane distillation (AGMD). Nevertheless, there is not much information on technical aspects of V-AGMD operation. Accordingly, this study aims to analyze the effect of membrane deformation on flux in V-AGMD operation. Experiments were carried out using a bench-scale V-AGMD system. Statistical models were applied to understand the flux behaviors. Statistical models based on MLR, GNN, and MLFNN techniques were developed to describe the experimental data. Results showed that the flux increased by up to 4 times with the application of vacuum in V-AGMD compared with conventional AGMD. The flux in both AGMD and V-AGMD is affected by the difference between the air gap pressure and the saturation pressure of water vapor, but their dependences were different. In V-AGMD, the membranes were found to be deformed due to the vacuum pressure because they were not fully supported by the spacer. As a result, the deformation reduced the effective air gap width. Nevertheless, the rejection and LEP were not changed even if the deformation occurred. The flux behaviors in V-AGMD were successfully interpreted by the GNN and MLFNN models. According to the model calculations, the relative impact of the membrane deformation ranges from 10.3% to 16.1%.
Keywords
air gap membrane distillation (AGMD); artificial neural network; flux; membrane deformation; vacuum; vacuum-assisted AGMD (V-AGMD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 El-Dessouky, H.T. and Ettouney, H.M. (2002), Fundamentals of seawater desalination, Elsevier.
2 Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A. and Hilal, N. (2019), "Reverse osmosis desalination, A state-of-the-art review", Desalination 459, 59-104. https://doi.org/10.1016/j.desal.2019.02.008.   DOI
3 Roman, N.D., Bre, F., Fachinotti, V.D. and Lamberts, R. (2020), "Application and characterization of metamodels based on artificial neural networks for building performance simulation, A systematic review", Energ. Buildings, 217, 109972. https://doi.org/10.1016/j.enbuild.2020.109972.   DOI
4 Saadon, A., Abdullah, J., Muhammad, N.S., Ariffin, J. and Julien, P.Y. (2021), "Predictive models for the estimation of riverbank erosion rates", Catena, 196, 104917. https://doi.org/10.1016/j.catena.2020.104917.   DOI
5 Jiang, X., Shao, Y., Sheng, L., Li, P. and He, G. (2021), "Membrane crystallization for process intensification and control: A review", Engineering, 7(1), 50-62. https://doi.org/10.1016/j.eng.2020.06.024.   DOI
6 Blandin, G., Vervoort, H., D'Haese, A., Schoutteten, K., Bussche, J.V., Vanhaecke, L., Myat, D.T., Le-Clech, P. and Verliefde, A.R.D. (2016), "Impact of hydraulic pressure on membrane deformation and trace organic contaminants rejection in pressure assisted osmosis (PAO)", Proc. Safe. Environ. Protect., 102, 316-327. https://doi.org/10.1016/j.psep.2016.04.004.   DOI
7 Caldera, U. and Breyer, C. (2020), "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems", Energy, 200, 117507. https://doi.org/10.1016/j.energy.2020.117507.   DOI
8 Choi, Y., Lee, Y., Shin, K., Park, Y. and Lee, S. (2020), "Analysis of long-term performance of full-scale reverse osmosis desalination plant using artificial neural network and tree model", Environ. Eng. Res., 25(5), 763-770. https://doi.org/10.4491/eer.2019.324.   DOI
9 Drioli, E., Ali, A. and Macedonio, F. (2015), "Membrane distillation, Recent developments and perspectives", Desalination, 356, 56-84. https://doi.org/10.1016/j.desal.2014.10.028.   DOI
10 Ebrahimzadeh, S., Wols, B., Azzellino, A., Martijn, B.J. and van der Hoek, J.P. (2021), "Quantification and modelling of organic micropollutant removal by reverse osmosis (RO) drinking water treatment", J. Water Proc. Eng., 42, 102164. https://doi.org/10.1016/j.jwpe.2021.102164.   DOI
11 Goh, P.S., Lau, W.J., Othman, M.H.D. and Ismail, A.F. (2018), "Membrane fouling in desalination and its mitigation strategies", Desalination, 425, 130-155. https://doi.org/10.1016/j.desal.2017.10.018.   DOI
12 Gonzalez, D., Amigo, J. and Suarez, F. (2017), "Membrane distillation, Perspectives for sustainable and improved desalination", Renew. Sust. Energ. Rev., 80, 238-259. https://doi.org/10.1016/j.rser.2017.05.078.   DOI
13 Guijt, C.M., Meindersma, G.W., Reith, T. and De Haan, A.B. (2005), "Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis", Sep. Purif. Technol., 43(3), 245-255. https://doi.org/10.1016/j.seppur.2004.09.016.   DOI
14 Ihsanullah, I., Atieh, M.A., Sajid, M. and Nazal, M.K. (2021), "Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies", Sci. Total Environ., 780, 146585. https://doi.org/10.1016/j.scitotenv.2021.146585.   DOI
15 Barragan, V.M. and Pastuschuk, E. (2014), "Viscoelastic deformation of sulfonated polymeric cation-exchange membranes exposed to a pressure gradient", Mater. Chem. Phys., 146(1), 65-72. https://doi.org/10.1016/j.matchemphys.2014.02.043.   DOI
16 Janajreh, I., Hashaikeh, R. and Hussain, M.N. (2017), "Evaluation of thermal efficiency of membrane distillation under conductive layer integration", Energy Procedia, 105, 4935-4942. https://doi.org/10.1016/j.egypro.2017.03.985.   DOI
17 Bhagat, S.K., Tung, T.M. and Yaseen, Z.M. (2020), "Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research", J. Clean. Prod., 250, 119473. https://doi.org/10.1016/j.jclepro.2019.119473.   DOI
18 Cerneaux, S., Struzynska, I., Kujawski, W.M., Persin, M. and Larbot, A. (2009), "Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes", J. Membr. Sci., 337(1), 55-60. https://doi.org/10.1016/j.memsci.2009.03.025.   DOI
19 Damtie, M.M. and Choi, J.S. (2017), "Modeling and application of direct contact membrane distillation for fluoride removal from aqueous solutions", Desalin. Water Treat., 97, 23-40. https://doi.org/10.5004/dwt.2017.21690.   DOI
20 Gostoli, C., Sarti, G.C. and Matulli, S. (1987), "Low temperature distillation through hydrophobic membranes", Sep. Sci. Technol., 22(2-3), 855-872. https://doi.org/10.1080/01496398708068986.   DOI
21 She, Q., Hou, D., Liu, J., Tan, K.H. and Tang, C.Y. (2013), "Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO): Implications for PRO process operation", J. Membr. Sci., 445, 170-182. https://doi.org/10.1016/j.memsci.2013.05.061.   DOI
22 Lee, S., Choi, J., Park, Y.G., Shon, H., Ahn, C.H. and Kim, S.H. (2019), "Hybrid desalination processes for beneficial use of reverse osmosis brine: Current status and future prospects", Desalination, 454, 104-111. https://doi.org/10.1016/j.desal.2018.02.002.   DOI
23 Kim, J., Park, K., Yang, D.R. and Hong, S. (2019), "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants", Appl. Energ., 254, 113652. https://doi.org/10.1016/j.apenergy.2019.113652.   DOI
24 Kim, Y., Choi, Y., Choi, J. and Lee, S. (2021), "Powdered activated carbon (PAC) - vacuum-assisted air gap membrane distillation (V-AGMD) hybrid system to treat wastewater containing surfactants, Effect of operating conditions", Environ. Eng. Res., 26(5), 200377-200370. https://doi.org/10.4491/eer.2020.377..   DOI
25 Kundzewicz, Z.W., Krysanova, V., Benestad, R.E., Hov, O ., Piniewski, M. and Otto, I.M. (2018), "Uncertainty in climate change impacts on water resources", Environ. Sci. Policy, 79, 1-8. https://doi.org/10.1016/j.envsci.2017.10.008.   DOI
26 Lee, C., Jang, J., Tin, N.T., Kim, S., Tang, C.Y. and Kim, I.S. (2020), "Effect of spacer configuration on the characteristics of FO membranes: Alteration of permeation characteristics by membrane deformation and concentration polarization", Environ. Sci. Technol., 54(10), 6385-6395. https://doi.org/10.1021/acs.est.9b06921.   DOI
27 Aziz, N.I.H.A. and Hanafiah, M.M. (2021), "Application of life cycle assessment for desalination: Progress, challenges and future directions", Environ. Pollut., 268, 115948. https://doi.org/10.1016/j.envpol.2020.115948.   DOI
28 Ahmed, F.E., Hashaikeh, R. and Hilal, N. (2020), "Hybrid technologies, The future of energy efficient desalination - A review", Desalination, 495, 114659. https://doi.org/10.1016/j.desal.2020.114659.   DOI
29 Alsaadi, A.S., Francis, L., Maab, H., Amy, G.L. and Ghaffour, N. (2015), "Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies", J. Membr. Sci., 489, 73-80. https://doi.org/10.1016/j.memsci.2015.04.008.   DOI
30 Atab, M.S., Smallbone, A.J. and Roskilly, A.P. (2016), "An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation", Desalination, 397, 174-184. https://doi.org/10.1016/j.desal.2016.06.020.   DOI
31 Thomas, N., Mavukkandy, M.O., Loutatidou, S. and Arafat, H.A. (2017), "Membrane distillation research & implementation, Lessons from the past five decades", Sep. Purif. Technol., 189, 108-127. https://doi.org/10.1016/j.seppur.2017.07.069.   DOI
32 Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P. and Edmonds, J. (2021), "Evaluating the economic impact of water scarcity in a changing world", Nature Commun., 12(1), 1915. https://doi.org/10.1038/s41467-021-22194-0.   DOI
33 Altaee, A., Zaragoza, G. and van Tonningen, H.R. (2014), "Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination", Desalination, 336(1), 50-57. https://doi.org/10.1016/j.desal.2014.01.002.   DOI
34 Ali, A., Tufa, R.A., Macedonio, F., Curcio, E. and Drioli, E. (2018), "Membrane technology in renewable-energy-driven desalination", Renew. Sust. Energ. Rev., 81, 1-21. https://doi.org/10.1016/j.rser.2017.07.047.   DOI
35 Alkhudhiri, A., Darwish, N. and Hilal, N. (2012), "Membrane distillation, A comprehensive review", Desalination, 287, 2-18. https://doi.org/10.1016/j.desal.2011.08.027.   DOI
36 Alsebaeai, M.K. and Ahmad, A.L. (2020), "Membrane distillation, Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance", J. Ind. Eng. Chem., 86, 13-34. https://doi.org/10.1016/j.jiec.2020.03.006.   DOI
37 Yang, C., Peng, X., Zhao, Y., Wang, X., Cheng, L., Wang, F., Li, Y. and Li, P. (2019), "Experimental study on VMD and its performance comparison with AGMD for treating copper-containing solution", Chem. Eng. Sci., 207, 876-891. https://doi.org/10.1016/j.ces.2019.07.013.   DOI
38 Skuse, C., Gallego-Schmid, A., Azapagic, A. and Gorgojo, P. (2021), "Can emerging membrane-based desalination technologies replace reverse osmosis?", Desalination, 500, 114844. https://doi.org/10.1016/j.desal.2020.114844.   DOI
39 Ullah, R., Khraisheh, M., Esteves, R.J., McLeskey Jr, J.T., AlGhouti, M., Gad-el-Hak, M. and Tafreshi, H.V. (2018), "Energy efficiency of direct contact membrane distillation", Desalination, 433, 56-67. https://doi.org/10.1016/j.desal.2018.01.025.   DOI
40 Usman, H.S., Touati, K. and Rahaman, M.S. (2021), "An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water", Renew. Energ., 169, 1294-1304. https://doi.org/10.1016/j.renene.2021.01.087.   DOI
41 Yuan, Z., Wei, L., Afroze, J. D., Goh, K., Chen, Y., Yu, Y., She, Q. and Chen, Y. (2019), "Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation", J. Membr. Sci., 579, 90-101. https://doi.org/10.1016/j.memsci.2019.02.045.   DOI
42 Zhao, S., Liao, Z., Fane, A., Li, J., Tang, C., Zheng, C., Lin, J. and Kong, L. (2021), "Engineering antifouling reverse osmosis membranes: A review", Desalination, 499, 114857. https://doi.org/10.1016/j.desal.2020.114857.   DOI
43 Janajreh, I., El Kadi, K., Hashaikeh, R. and Ahmed, R. (2017), "Numerical investigation of air gap membrane distillation (AGMD), Seeking optimal performance", Desalination, 424, 122-130. https://doi.org/10.1016/j.desal.2017.10.001.   DOI
44 Ashoor, B.B., Mansour, S., Giwa, A., Dufour, V. and Hasan, S.W. (2016), "Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review", Desalination, 398, 222-246. https://doi.org/10.1016/j.desal.2016.07.043.   DOI
45 Bagheri, M., Akbari, A. and Mirbagheri, S.A. (2019), "Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques, A critical review", Proc. Safe. Environ. Protect., 123, 229-252. https://doi.org/10.1016/j.psep.2019.01.013.   DOI
46 Andres-Manas, J.A., Ruiz-Aguirre, A., Acien, F.G. and Zaragoza, G. (2020), "Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration", Desalination, 475, 114202. https://doi.org/10.1016/j.desal.2019.114202.   DOI
47 Tijing, L.D., Woo, Y.C., Choi, J.S., Lee, S., Kim, S.H. and Shon, H.K. (2015), "Fouling and its control in membrane distillation-A review", J. Membr. Sci., 475, 215-244. https://doi.org/10.1016/j.memsci.2014.09.042.   DOI
48 Abu-Zeid, M.A.E.R., Zhang, L., Jin, W.Y., Feng, T., Wu, Y. and Chen, H. L. (2016), "Improving the performance of the air gap membrane distillation process by using a supplementary vacuum pump", Desalination, 384, 31-42. https://doi.org/10.1016/j.desal.2016.01.020.   DOI
49 Peters, C.D. and Hankins, N.P. (2021), "Making zero-liquid discharge desalination greener: Utilising low-grade heat and vacuum membrane distillation for the regeneration of volatile draw solutes", Desalination, 507, 115034. https://doi.org/10.1016/j.desal.2021.115034.   DOI
50 Im, B.G., Lee, J.G., Kim, Y.D. and Kim, W.S. (2018), "Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane", J. Membr. Sci., 565, 14-24. https://doi.org/10.1016/j.memsci.2018.08.006.   DOI
51 Pistocchi, A., Bleninger, T., Breyer, C., Caldera, U., Dorati, C., Ganora, D., Millan, M.M., Paton, C., Poullis, D., Herrero, F.S., Sapiano, M., Semiat, R., Sommariva, C., Yuece, S. and Zaragoza, G. (2020), "Can seawater desalination be a win-win fix to our water cycle?", Water Res., 182, 115906. https://doi.org/10.1016/j.watres.2020.115906.   DOI
52 Hamdan, H., Saidy, M., Alameddine, I. and Al-Hindi, M. (2021), "The feasibility of solar-powered small-scale brackish water desalination units in a coastal aquifer prone to saltwater intrusion: A comparison between electrodialysis reversal and reverse osmosis", J. Environ. Manage., 290, 112604. https://doi.org/10.1016/j.jenvman.2021.112604.   DOI
53 Ruiz Salmon, I. and Luis, P. (2018), "Membrane crystallization via membrane distillation", Chem. Eng. Process, 123, 258-271. https://doi.org/10.1016/j.cep.2017.11.017.   DOI
54 Leaper, S., Abdel-Karim, A., Gad-Allah, T.A. and Gorgojo, P. (2019), "Air-gap membrane distillation as a one-step process for textile wastewater treatment", Chem. Eng. J., 360, 1330-1340. https://doi.org/10.1016/j.cej.2018.10.209.   DOI
55 Missimer, T.M. and Maliva, R.G. (2018), "Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls", Desalination, 434, 198-215. https://doi.org/10.1016/j.desal.2017.07.012.   DOI
56 Niwa, T. (2003), "Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures", J. Chem. Inform. Comput. Sci., 43(1), 113-119. https://doi.org/10.1021/ci020013r.   DOI
57 Noor, I.E., Martin, A. and Dahl, O. (2020), "Process design of industrial-scale membrane distillation system for wastewater treatment in nano-electronics fabrication facilities", MethodsX, 7, 101066. https://doi.org/10.1016/j.mex.2020.101066.   DOI
58 Pinto, F.S. and Marques, R.C. (2017), "Desalination projects economic feasibility: A standardization of cost determinants", Renew. Sust. Energ. Rev., 78, 904-915. https://doi.org/10.1016/j.rser.2017.05.024.   DOI