• Title/Summary/Keyword: conventional water treatment

Search Result 567, Processing Time 0.027 seconds

The Characteristics of Disinfection by-products Occurrence and Speciation in D Water Treatment Processes (D 정수처리장에서 소독부산물 발생 및 종분포 특성)

  • Kim, Sung-Joon;Kim, Jong-Min;Jeon, Yong-Tae;Park, Jong-Eun;Won, Chan-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.406-412
    • /
    • 2010
  • Concentrations and speciations of Trihalomethanes (THMs) and Haloacetic acids ($HAA_5$) that can be formed during chlorine disinfection by-product (DBPs) in full-scale drinking water treatment plants were investigated. Jeon-ju D water treatment plant that adopted conventional water treatment processes was chosen for investigation. SUVA values according to water treatment process changes were observed from 1.3 to 2.1. The process average concentrations of THMs was 7.4 ppb, 9.0 ppb and 14.7 ppb respectively, while the average concentrations of $HAA_5$ by each process which are precipitation water, filterater water, treated water, were 15.5 ppb, 14.9 ppb and 25.8 ppb respectively. DBPs concentrations was lower in the winter than summer. The major species of THMs was chloroform and the second highest was bromodichloromethane (BDCM) and the third highest was dibromochloromethane (DBCM). In case of $HAA_5$, the rate of trichloroacetic acid (TCAA) was detected. The species disribution of THMs is related to the change of SUVA and species disribution of $HAA_5$ is related to the concentrations of bromine and injection position of chlorine and injection quantity.

Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm (젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구)

  • Jang, Young Ho;Lee, Soo Moon;Kim, Woong Su;Kang, Jin Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.

Experiences of Optimization of Flocculation Basins in Water Treatment Plants (정수장 응집공정의 최적운전조건 결정 사례)

  • Han, Moo-Young;Chung, Young-Kyun;Park, Yong-Hyo;Kim, Jeong-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.311-317
    • /
    • 2000
  • The operation of flocculation process and the evaluation thereof have been mainly based on G, t and $G{\times}t$ values which are available from design guidelines and texts. However, their suggested ranges are too wide to find the optimum condition specific to a particular water treatment plant and none of the existing method can be used to evaluate and suggest the optimum operational condition. Recently, a commercially available particle counter is found to be useful in determining the flocculation process based on the particle dynamics. The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The experiments were performed at two conventional water treatment plants in Korea, one with horizontal mechanical flocculators, and another with vertical type mechanical flocculators. In this paper, experiences to evaluate the flocculation process and to suggest the optimum operation condition will be presented. Although particle counting method is found to be beneficial compared to any other existing methods, the optimum condition is very much site-specific and should be evaluated at each water treatment plant for different conditions.

  • PDF

Production of high dissolved O2/O3 with rotating wheel entraining gas method for environmental application

  • Li, Haitao;Xie, Bo;Hui, Mizhou
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • There is a significant demand to make various dissolved gases in water. However, the conventional aeration method shows low gas mass transfer rate and gas utilization efficiency. In this study, a novel rotating wheel entraining gas method was developed for making high dissolved $O_2$ and $O_3$ in water. It produced higher concentration and higher transfer rate of dissolved $O_2$ and $O_3$ than conventional bubble aeration method, especially almost 100% of gas transfer efficiency was achieved for $O_3$ in enclosed reactor. For application of rotating wheel entraining gas method, aerobic bio-reactor and membrane bio-reactor (MBR) were successfully used for treatment of domestic and pharmaceutical wastewater, respectively; and vacuum ultraviolet $(VUV)/UV+O_3/O_2$ reactors were well used for sterilization in air/water, removal of dust particles and toxic gases in air, and degradation of pesticide residue and sterilization on fruits and vegetables.

Perfluorinated Compounds; New Challenge and Problem (과불화 화합물 (PFCs); 새로운 도전과 과제)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Roh, Jae-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1151-1160
    • /
    • 2009
  • Perfluorinated compounds (PFCs) have been recognized as emerging environmental pollutants and are widely distributed all over the world. These compounds are hardly degradable and cause bioaccumulation and biomagnification during present for a long time in the environment: thereby after adversely biota and human bodies. It is difficult to remove PFCs using conventional water/wastewater treatment because of resistant property to photodecomposition, biodegradation and chemical decomposition. Moreover, domestic literature data on the pollution of PFCs in rivers and lakes are limited. In this paper, species, sources and risk of PFCs as well as behavior properties in drinking water/wastewater and treatment processes are demonstrated to encourage the domestic concern about PFCs.

Anaerobic Treatment of Piggery Slurry - Review -

  • Chynoweth, D.P.;Wilkie, A.C.;Owens, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.607-628
    • /
    • 1999
  • The swine waste industry is growing rapidly along with the world human population. The trend is toward more concentrated piggeries with numbers of herds in the thousands. Associated with these increased herds are large quantities of wastes, including organic matter, inorganic nutrients, and gaseous emissions. The trend in swine waste management is toward treatment of these wastes to minimize negative impact on the health and comfort of workers and animals and the atmosphere, water, and soil environments. Treatment of these wastes has traditionally involved land application, lagoons, oxidation ditches, and conventional batch and continuously stirred reactor designs. More sophisticated treatment systems are being implemented, involving advanced anaerobic digester designs, integrated with solids separation, aerobic polishing of digester effluents, and biological nutrient removal. This review discusses the present and future role of anaerobic processes in piggery waste treatment with emphasis on reactor design, operating and performance parameters, and effluent processing.

A perspective of chemical treatment for cyanobacteria control toward sustainable freshwater development

  • Huh, Jae-Hoon;Ahn, Ji-Whan
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • One of the most threatening consequences of eutrophic freshwater reservoirs is algal blooming which typically occur after the long a mega drought or/and irregular rainfall under influence of climate change. The long-term experiences of chemical treatment are known as a most practical effort to reduce health concerns from human exposure of harmful cyanobacteria as well as to preserve ultimate freshwater resources. Even though these conventional chemical treatment methods do not completely solve the algal residue problem in water treatment plant or directly in the water bodies, they still have big advantages as fast and efficient removal process of cyanobacteria due to cheaper, easier to manage. This review summarizes their chemical treatment scenarios of the representative coagulants, pre-oxidants and algaecides composed to chemical compounds which immediately may help to manage severe cyanobacteria blooms in the summer seasons.

Determination of the Optimal Location for Water Treatment Plants in the Decentralized Water Supply System (분산형 용수공급시스템 구축을 위한 정수처리시설 최적 위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kim, Jeong-Hyun;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Major issues in water supply service have changed from expansion of service area to improvement of service quality, i.e., water quality and safety, and early response to emergency situation. This change in the service concept triggers the perceptions of limitation with the current centralized water supply system and of necessities of decentralized (distributed) water supply system (DWSS), which can make up the limitations. DWSS can reduce the possibility of water supply outage by establishing multiple barriers such as emergency water supply system, and secure better water quality by locating treatment facilities neighboring consumers. On the other hand, fluctuation of water demand will be increased due to the reduced supply area, which makes difficult to promptly respond the fluctuating demand. In order to supplement this, hybrid water supply system was proposed, which combined DWSS with conventional water supply system using distributing reservoir to secure the stability of water supply. The Optimal connection point of DWSS to existing water supply network in urban area was determined by simulating a supply network using EPANET. Optimal location of decentralized water treatment plant (or connection point) is a nodal point where changes in pressure at other nodal points can be minimized. At the same time, the optimal point should be selected to minimize hydraulic retention time in supply network (water age) to secure proper water quality. In order to locate the point where these two criteria are satisfied optimally, Distance measure method, one of multi-criteria decision making was employed to integrate the two results having different dimensions. This methodology can be used as an efficient decision-support criterion for the location of treatment plant in decentralized water supply system.

Response of Leaf Water Potential and Growth Characteristics to Irrigation Treatment in Soybean

  • Lee, Jeong-Hwa;Seong, Rak-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • Soybeans [Glycine max (L.) Merr.] are frequently exposed to unfavorable environments during growing seasons and water is the most important factor limiting for the production system. The purpose of this study was to determine the leaf water potential changes by irrigation, and to evaluate the relationships of leaf water potential, growth and yield in soybeans. Three soybean cultivars, Hwangkeumkong, Shinpaldalkong 2, and Pungsannamulkong, were planted in growth chamber and field with irrigated treatments. Leaf water potential of three soybean cultivars was positively correlated with leaf water content during vegetative and reproductive growth stages in growth chamber and field experiments. Leaf water potentials measured for three soybean cultivars under growth chamber were higher than those of under field conditions. Higher leaf water potential with irrigated plots under field was observed compared to conventional plots during reproductive growth stages. Leaf water potentials of three soybean cultivars were continually decreased during reproductive growth stages under field and there was no significant difference among them. Number of leaves, leaf water content, pod dry weight, number of seeds and seed dry weight with irrigated plots were higher than those of conventional plots. The results of this study suggested that leaf water potential could be used as an important growth indicator during the growing season of soybean plants.

Grain Yield and Seed Quality of Rice Plants as Affected by Water-saving Irrigation (절수관개방법이 벼 수량 및 품질에 미치는 영향)

  • Choi Weon-Young;Park Hong-Kyu;Moon Sang-Hoon;Choi Min-Gyu;Kim Sang-Su;Kim Chung-Kon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.141-144
    • /
    • 2006
  • This experiment investigated seed yield and grain quality of rice plants treated with different irrigation methods (water supply until complete saturation, field capacity, and surface soil crack) compared with a conventional irrigation method (inundation). Each treatment began 20 days after transplanting and ended 35 days after heading. There was an 8, 18 and 18% reduction in irrigation water in the three treatments, respectively. Rice yield with complete saturation treatment was similar to that of conventional irrigation, while those of field capacity and soil crack were less by 7 and 13%. The ratio of filled grain was lower and amylose content was higher in the water-saving irrigation than those from conventional irrigation.