• Title/Summary/Keyword: conventional process

Search Result 6,810, Processing Time 0.038 seconds

Microwave Effect on Curing of Waterborne Polyurethane

  • Lee, Hoi-Kwan;Fang, Chris. Y.;Pantano, Carlo. G.;Kang, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.961-963
    • /
    • 2011
  • Spin-coated waterborne polyurethane to protect glass surface from environmental attacks was cured by using microwave heating. The effect of microwave heating on the reaction kinetics, chemical durability, and transmittance of polyurethane was investigated. In comparison to the conventional heating the results show that the microwave heating substantially accelerates the curing process of waterborne polyurethane and the total time for the completion of the reaction is only 1/7 of that in the conventional process. The microwave cured sample showed an excellent caustic resistance compared to conventional cured one. It means that microwave heating produces dense structure during curing process. The dense structure does not affect to the transmittance in the visible region.

Polycarprolactone Ultrafine Fiber Membrane Fabricated Using a Charge-reduced Electrohydrodynamic Process

  • Kim, Geun-Hyung;Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon;Koh, Young-Ho
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.533-537
    • /
    • 2009
  • This paper introduces a modified electro spinning system for biomedical wound-healing applications. The conventional electrospinning process requires a grounded electrode on which highly charged electro spun ultrafine fibers are deposited. Biomedical wound-healing membranes, however, require a very low charge and a low level of remnant solvent on the electrospun membrane, which the conventional process cannot provide. An electrohydrodynamic process complemented with field-controllable electrodes (an auxiliary electrode and guiding electrodes) and an air blowing system was used to produce a membrane, with a considerably reduced charge and low remnant solvent concentration compared to one fabricated using the conventional method. The membrane had a small average pore size (102 nm) and high porosity (85.1%) for prevention of bacterial contamination. In vivo tests on rats showed that these directly electro spun fibrous membranes produced using the modified electro spinning process supported the good healing of skin bums.

Numerical Study on Flexible Forming Process for Sheet Metal (박판용 가변성형공정의 수치적 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio (세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

Design of Reformate Fractionation Process with Thermally Coupled Distillation Column (Reformate 분리공정에서의 열복합 증류탑 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2445-2450
    • /
    • 2011
  • Design of reformate fractionation process using a fully thermally coupled distillation is conducted with commercial design software Aspen HYSYS. Detailed procedure of the design is explained, and the performance of the process is compared with that of a conventional system. The design outcome indicates that the procedure is simple and efficient. The performance of the new process indicates that an energy saving of 12.2% is obtained compared with the conventional process while total number of trays maintains at the same.

Electrical Characteristics of Self Aligned Gate GaAs MESFETs Using Ion Beam Deposited Tungsten (이온빔 증착 텅스텐을 이용한 자기정렬 게이트 GaAs MESFET의 전기적 특성)

  • 편광의;박형무;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1841-1851
    • /
    • 1990
  • Self-aligned gate GaAs MESFETs using ion beam deposited tungsten applicable to GaAs LSI fabrication process have been fabricated. Silicon implanted samples were annealed using isothermla two step RTA process and conventional one step RTA process. The electrical and physicla characteristics of annealed samples were investigated using Hall and I-V measurements. As results of measurements, activation characteristics of the isothermal two step RTA process are better than those of one step annealed ones. Using the developed processes, GaAs SAFETs (Self-Aligned Gate FET) have been fabricated and electdrical characteirstics are measured. As results, subthreshold currents of SAGFETs are 6x10**-10 A/\ulcorner, that is compatible to conventional MESFET, maximum transconductances of 0.75\ulcorner gate MESFET using one step RTA process and 2\ulcorner gate MESFET using isothermal two step RTA process are 18 mS/mm, 41 mS/mm respectively.

  • PDF

Design of Gas Concentration Process with Thermally Coupled Distillation Column Using HYSYS Simulation (HYSYS를 이용한 열복합 증류식 가스 농축공정의 설계)

  • 이주영;김영한;황규석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.842-846
    • /
    • 2002
  • Design of gas concentration process using a fully thermally coupled distillation is conducted with the commercial design software HYSYS. Detailed procedure of the design is explained, and the performance of the process is compared with that of a conventional system A structural design is exercised for the design convenience. The design outcome indicates that the procedure is simple and efficient. The structural information yielded from equilibrium distillation gives an easy formulation of distillation system which is the initial input required from the setup of the distillation system The performance of the new process indicates that an energy saving of 17.6 % is obtained compared with the conventional process while total number of trays maintains at the same.

A Study on a In-mold Packaging Process using Injection Molding (사출성형을 이용한 마이크로 채널의 패키징 공정에 관한 연구)

  • Lee, Kwan-Hee;Park, Duck-Soo;Yoon, Jae-Sung;Yoo, Yeong-Eun;Choi, Doo-Sun;Kim, Sun-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1821-1824
    • /
    • 2008
  • A novel in-mold packaging process has been developed to manufacture devices with closed channels. In this unified process, fabrication of open channels and forming the rigid cover on top of them are sequentially integrated in the same mold. The entire process is comprised of two phases. In the first phase, the open channels are fabricated under an exquisitely controlled temperature and pressure using the conventional micro injection molding technology. In the second phase, the closed channels are fabricated by conducting the injection molding process using the molded structure with the open channels as a mold insert. As a result, the in-mold technology can eliminate the bonding processes such as heating, ultrasonic or chemical processes for cohesion between the channel and the cover, which have been required in conventional methods.

  • PDF

Magnetic Characterization of $YBa_2Cu_3Ox$ Single Crystal with a Variation of Growth Temperature (성장온도를 변화시킨 $YBa_2Cu_3Ox$ 단결정의 자기적 특성)

  • 한영희;성태현;한상철;이준성;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.251-254
    • /
    • 1999
  • A new multi-seeding process for the growth of YBa$_2$Cu$_3$Oxx single crystals was developed. This process introduces an additional heating step to peritectic temperature and a subsequent slow cooling step to the growth temperature following the point when the crystals contacted. The crystal growth was resumed thereafter. The results obtained with this new process were compared with those of the conventional growth process, in which materials were only kept at the growth temperature. It was observed that the liquid phase between crystals were almost completely eliminated, but that Y2ll grains were grown during this new process. There was no significant improvement in trapped magnetic field over the conventional process, which is believed to be due to the cracks generated during the oxygen heat treatment or to the growth of YBa$_2$Cu$_3$Ox grains.

  • PDF

Fuzzy-based PID Controller for Cascade Process Control

  • Tummaruckwattana, S.;Pannil, P.;Chaikla, A.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.268-271
    • /
    • 2004
  • This paper describes the development of a fuzzy logic control based on PID controller to improve the performances of the control system using conventional PID controller for the cascade process control systems. The structure of the proposed control system consists of two fuzzy-based PID controllers. One is used to eliminate the input disturbances of the inner loop and the other is used to regulate output response of the outer loop. The fuzzy PID design is derived from the linear-time continuous function of the conventional PID controller. The performance of the proposed controller is verified by MATLAB/SIMULINK simulation. Results of simulation studies demonstrates the outstanding of the control system using fuzzy-based PID controller in terms of reduced overshoot and fast response compared with the conventional PID controller.

  • PDF