• Title/Summary/Keyword: conventional net

Search Result 580, Processing Time 0.031 seconds

Measuring Situation Awareness of Operating Team in Different Main Control Room Environments of Nuclear Power Plants

  • Lee, Seung Woo;Kim, Ar Ryum;Park, Jinkyun;Kang, Hyun Gook;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.153-163
    • /
    • 2016
  • Environments in nuclear power plants (NPPs) are changing as the design of instrumentation and control systems for NPPs is rapidly moving toward fully digital instrumentation and control, and modern computer techniques are gradually introduced into main control rooms (MCRs). Within the context of these environmental changes, the level of performance of operators in a digital MCR is a major concern. Situation awareness (SA), which is used within human factors research to explain to what extent operators of safety-critical systems know what is transpiring in the system and the environment, is considered a prerequisite factor to guarantee the safe operation of NPPs. However, the safe operation of NPPs can be guaranteed through a team effort. In this regard, the operating team's SA in a conventional and digital MCR should be measured in order to assess whether the new design features implemented in a digital MCR affect this parameter. This paper explains the team SA measurement method used in this study and the results of applying this measurement method to operating teams in different MCR environments. The paper also discusses several empirical lessons learned from the results.

Interaction of Nonsedating Antihistamines with Cerebral Muscarinic Receptors (비수기성 항 Histamine제와 대뇌 Muscarine 수용체와의 상호작용)

  • 김영열;이정수;박인숙
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.642-651
    • /
    • 1999
  • Nonsedating antihistamines do net cause sedation in therapeutic doses because these drugs hardly cross the blood-brain barrier. Since most of the peripheral side dffects of conventional antihistamines are related to their muscarinic receptor blocking action, the present study was performed to investigate whether nonsedating antihistamines interact with the muscarinic receptors and discriminate the muscarinic receptor subtypes in the rat cerebral microsomal fraction which containes both $M_1,{\;}M_2,{\;}M_3{\;}and{\;}M_4$ receptors. Five nonsedating antihistamines at high concentrations inhibited [$^3H$]QNB binding to the muscarinic receptor in a dose-dependent manner. The inhibition curves of these drugs except loratadine which showed positive cooperativity (nH=1.55) were steep (nH=1), indicating interaction with a single homogenous population of the binding sites. Astemizole, clemizole and mequitazine increased the $K_D$ value for [$^3H$]QNB without affecting the binding site concentrations, and this increase in the $K_D$ value resulted from the ability of these drugs to slow [$^3H$]QNB-receptor association. The Ki values of astemizole, clemizole and mequitazine for the inhibition for the inhibition of [$^3H$]QNB binding to muscarinic receptor were 0.58, 5.99 and $0.007{\;}{\mu}M$, respectively. However, loratadine and terfenadine inhibited noncompetitively [$^3H$]QNB binding with the normalized $IC_50$ value of about $2{\;}{\mu}M$. These results demonstrate that; 1) astemizole, clemizole and mequitazine interact directly with the muscarinic receptor at high concentrations; 2) muscarinic receptor blocking potency of these drugs varies widely among drugs; 3) these drugs do not discriminate between muscarinic receptor subtypes.

  • PDF

A Trial for Improvement of Energy Efficiency of Plasma Reactor by Superposing Two Heterogeneous Discharges - Characteristics of Surface and Corona Discharge Combined Plasma Reactor - (이종방전 중첩에 의한 방전 플라스마반응기의 효율개선의 시도 - 연면.직류코로나 방전 중첩형 반응기의 특성 -)

  • ;Mizuki Yamaguma
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.66-70
    • /
    • 2000
  • In order to cope with environmental problems caused by harmful gases emitted from various industrial sources, a new technology which employs discharge plasma formed in ordinary atmospheric pressure has been intensively investigated in many industrialized nations. Although a plenty of useful outcomes and suggestions have been made public by scientists in this field, few commercial products which effectively decompose pollutant gases have appeared as yet. This is partly because that the energy efficiency of a most effective plasma reactor has not reached a satisfactory level in comparison with those of devices using conventional technologies. In an attempt to solve the problem mentioned above, we noticed to combine heterogeneous electrical discharges. This concepts is based on that each plasma reactor has its specific spatial region in which chemical reaction are active and by electrically affected with another reactor of different type, the activated region would increase - which may lead to cutting down the energy consumption. To prove this concept experimentally, two different discharge equipments, a plane ceramic-based surface discharge electrode and a corona electrode with tungsten needle may, are selected and combined to fabricate a hybrid plasma reactor. The results are summarized as follows; (1) Ozone concentration generated in the plasma region drastically increases when the positive corona discharge is added to the surface discharge. The rate of increase of ozone depends on the frequency of the surface discharge. The negative corona, however, does not contribute to the improvement of the ozone generation. (2) NO(nitrogen monoxide) decomposition rate also improves by simultaneously applying the surface and the positive corona discharges. The effect of the corona superposition is more evident when the level of the surface discharge is moderate. (3) By adjusting the corona level, the net energy efficiency during NO decomposition improves in comparison with the simple surface discharge reactor.

  • PDF

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

Dosimetric characterization and commissioning of a superficial electronic brachytherapy device for skin cancer treatment

  • Park, Han Beom;Kim, Hyun Nam;Lee, Ju Hyuk;Lee, Ik Jae;Choi, Jinhyun;Cho, Sung Oh
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.937-943
    • /
    • 2018
  • Background: This work presents the performance of a novel electronic brachytherapy (EBT) device and radiotherapy (RT) experiments on both skin cancer cells and animals using the device. Methods and materials: The performance of the EBT device was evaluated by measuring and analyzing the dosimetric characteristics of X-rays generated from the device. The apoptosis of skin cancer cells was analyzed using B16F10 melanoma cancer cells. Animal experiments were performed using C57BL/6 mice. Results: The X-ray characteristics of the EBT device satisfied the accepted tolerance level for RT. The results of the RT experiments on the skin cancer cells show that a significant apoptosis induction occurred after irradiation with 50 kVp X-rays generated from the EBT device. Furthermore, the results of the animal RT experiments demonstrate that the superficial X-rays significantly delay the tumor growth and that the tumor growth delay induced by irradiation with low-energy X-rays was almost the same as that induced by irradiation with a high-energy electron beam. Conclusions: The developed new EBT device has almost the same therapeutic effect on the skin cancer with a conventional linear accelerator. Consequently, the EBT device can be practically used for human skin cancer treatment in the near future.

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

Study of Optimal Process Conditions of 3D Porous Polymer Printing for Personal Safety Products (개인안전 제품을 위한 3 차원 다공성 폴리머 프린팅의 최적화 공정조건에 대한 연구)

  • Yoo, Chan-Ju;Kim, Hyesu;Park, Jun-Han;Yun, Dan-Hee;Shin, Jong-Kuk;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2016
  • In this paper, a fundamental experiment regarding the formation of porous 3D structures for personal safety products using 3D PPP (Porous Polymer Printing) was introduced for the first time. The filament was manufactured by mixing PP (Polypropylene) and CBA (Chemical Blowing Agent) with polymer extruder, and the diameter of the filament was approximately 1.75mm. The proposed 3D PPP method, combined with the conventional FDM (Fused Deposition Modeling) procedure, was influenced by process parameters, such as the nozzle temperature, printing speed and CBA density. In order to verify the best processing conditions, the depositing parameters were experimentally investigated for the porous polymer structure. These results provide parameters under which to form a multiple of 3D porous polymer structures, as well as various other 3D structures, and help to improve the mechanical shock absorption for personal safety products.

POINTWISE CROSS-SECTION-BASED ON-THE-FLY RESONANCE INTERFERENCE TREATMENT WITH INTERMEDIATE RESONANCE APPROXIMATION

  • BACHA, MEER;JOO, HAN GYU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.791-803
    • /
    • 2015
  • The effective cross sections (XSs) in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs) for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite massbased method. The RIFs were improved by 1% in $^{235}U$, 7% in $^{239}Pu$, and >2% in $^{240}Pu$. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor applicationbenchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous configurations.

MEASUREMENT OF NUCLEAR FUEL ROD DEFORMATION USING AN IMAGE PROCESSING TECHNIQUE

  • Cho, Jai-Wan;Choi, Young-Soo;Jeong, Kyung-Min;Shin, Jung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • In this paper, a deformation measurement technology for nuclear fuel rods is proposed. The deformation measurement system includes a high-definition CMOS image sensor, a lens, a semiconductor laser line beam marker, and optical and mechanical accessories. The basic idea of the proposed deformation measurement system is to illuminate the outer surface of a fuel rod with a collimated laser line beam at an angle of 45 degrees or higher. For this method, it is assumed that a nuclear fuel rod and the optical axis of the image sensor for observing the rod are vertically composed. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of the laser line beam position on the surface of the fuel rod is imaged as a parabolic beam in the high-definition CMOS image sensor. An ellipse model is then extracted from the parabolic beam pattern. The center coordinates of the ellipse model are taken as the feature of the deformed fuel rod. The vertical offset of the feature point of the nuclear fuel rod is derived based on the displacement of the offset in the horizontal direction. Based on the experimental results for a nuclear fuel rod sample with a formation of surface crud, an inspection resolution of 50 ${\mu}m$ is achieved using the proposed method. In terms of the degree of precision, this inspection resolution is an improvement of more than 300% from a 150 ${\mu}m$ resolution, which is the conventional measurement criteria required for the deformation of neutron irradiated fuel rods.