• Title/Summary/Keyword: conventional natural gas

Search Result 120, Processing Time 0.034 seconds

Consistent thermal analysis procedure of LNG storage tank

  • Jeon, Se-Jin;Jin, Byeong-Moo;Kim, Young-Jin;Chung, Chul-Hun
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.445-466
    • /
    • 2007
  • As the LNG (Liquefied Natural Gas) tank contains cryogenic liquid, realistic thermal analyses are of a primary importance for a successful design. The structural details of the LNG tank are so complicated that some strategies are necessary to reasonably predict its temperature distribution. The proposed heat transfer model can consider the beneficial effects of insulation layers and a suspended deck on temperature distribution of the outer concrete tank against cryogenic conditions simply by the boundary conditions of the outer tank model. To this aim, the equilibrium condition or heat balance in a steady state is utilized in a various way, and some aspects of heat transfer via conduction, convection and radiation are implemented as necessary. Overall thermal analysis procedures for the LNG tank are revisited to examine some unjustifiable assumptions of conventional analyses. Concrete and insulation properties under cryogenic condition and a reasonable conversion procedure of the temperature-induced nonlinear stress into the section forces are discussed. Numerical examples are presented to verify the proposed schemes in predicting the actual temperature and stress distributions of the tank as affected by the cryogenic LNG for the cases of normal operation and leakage from the inner steel tank. It is expected that the proposed schemes enable a designer to readily detect the effects of insulation layers and a suspended deck and, therefore, can be employed as a useful and consistent tool to evaluate the thermal effect in a design stage of an LNG tank as well as in a detailed analysis.

Evaluation of Mechanical Performance of Membrane Type Secondary Barrier Anisotropic Composites depending on Fiber Direction (멤브레인 형 2차 방벽 이방성 복합재료의 섬유방향에 따른 기계적 성능 평가)

  • Jeong, Yeon-Jae;Kim, Jeong-Dae;Hwang, Byeong-Kwan;Kim, Hee-Tae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.168-174
    • /
    • 2020
  • Recently, the size of Liquified Natural Gas (LNG) carriers has been increasing, in turn increasing the load generated during operation. To handle this load, the thickness of LNG Cargo Containment Systems (CCSs) should be increased. Despite increasing the thickness of LNG CCSs, a secondary barrier is still used in conventional thickness. Therefore, the mechanical performance of the existing secondary barrier should be verified. In this study, tensile test of the secondary barrier was performed to evaluate mechanical properties under several low- and cryogenic-temperature conditions considering LNG environment, and in each fiber direction considering that the secondary barrier is composed of anisotropic composite materials depending on the glass fibers. Additionally, the coefficient of thermal expansion was measured by considering the degradation of the mechanical properties of the secondary barrier caused by the generated thermal stress during periodical unloading. As a result, the mechanical performance of secondary barrier in the Machine Direction (MD) was generally found to be superior than that in the Transverse Direction (TD) owing to the warp interlock structure of the glass fibers.

Numerical and experimental investigation on the global performance of a novel design of a Low Motion FPSO

  • Peng, Cheng;Mansour, Alaa M.;Wu, Chunfa;Zuccolo, Ricardo;Ji, Chunqun;Greiner, Bill;Sung, Hong Gun
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.427-439
    • /
    • 2018
  • Floating Production Storage and Offloading (FPSO) units have the advantages of their ability to provide storage and offloading capabilities which are not available in other types of floating production systems. In addition, FPSOs also provide a large deck area and substantial topsides payload capacity. They are in use in a variety of water depths and environments around the world. It is a good solution for offshore oil and gas development in fields where there is lack of an export pipeline system to shore. However due to their inherently high motions in waves, they are limited in the types of risers they can host. The Low Motion FPSO (LM-FPSO) is a novel design that is developed to maintain the advantages of the conventional FPSOs while offering significantly lower motion responses. The LM-FPSO design generally consists of a box-shape hull with large storage capacity, a free-hanging solid ballast tank (SBT) located certain distance below the hull keel, a few groups of tendons arranged to connect the SBT to the hull, a mooring system for station keeping, and a riser system. The addition of SBT to the floater results in a significant increase in heave, roll and pitch natural periods, mainly through the mass and added mass of the SBT, which significantly reduces motions in the wave frequency range. Model tests were performed at the Korea Research Institute of Ships & Ocean Engineering (KRISO) in the fall of 2016. An analytical model of the basin model (MOM) was created in Orcaflex and calibrated against the basin-model. Good agreement is achieved between global performance results from MOM's predictions and basin model measurements. The model test measurements have further verified the superior motion response of LM-FPSO. In this paper, numerical results are presented to demonstrate the comparison and correlation of the MOM results with model test measurements. The verification of the superior motion response through model test measurements is also presented in this paper.

The Newest Technology Development and Commercialization Status of Coal Gasification (석탄가스화 기술의 최신 개발 동향 및 상업화 현황)

  • Lee, Jin-Wook;Yun, Yongseung;Kang, Won-seok
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.150-163
    • /
    • 2015
  • Gasification technology is one of the representative next-generation fossil fuel utilization technologies, converting low grade fossil fuels such as coal, heavy residue oil, pet-coke into highly clean and efficient energy sources. Accordingly, related market demand for gasification technology is ever increasing steadily and rapidly. A few years ago, conventional pulverized coal utilization technology had an edge over the gasification technology but the most significant technical barrier of limited capacity and availability has been largely overcome nowadays. Futhermore, it will be more competitive in the future with the advancement of related technologies such as gas turbine, ion transfer membrane and so on. China has recently completed a commercialization-capable large-scale coal gasification technology for its domestic market expansion and foreign export, rapidly becoming a newcomer in the field and competing with existing US and EU technical leadership at comparable terms. Techno-economic aspect deserves intensive attention and steady R&D efforts need to continue in organized, considering that gasification technology is quite attractive combined with $CO_2$ capture process and coal to SNG plant is economically viable in Korea where natural gas is very expensive. In the present paper, recent technology development and commercialization trend of many leading companies with coal gasification expertise have been reviewed with significant portion of literature cited from the recently held '2014 Gasification Technology Conference'.

Analysis on Ventilation Efficiency of Standard Duck House using Computational Fluid Dynamics (전산유체역학을 이용한 표준 오리사 설계안에 대한 환기효율성 분석)

  • Yeo, Uk-Hyeon;Jo, Ye-Seul;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Park, Se-Jun;Kim, Rack-Woo;Lee, Sang-Yeon;Lee, Seung-No;Lee, In-Bok;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.51-60
    • /
    • 2015
  • In Korea, 69.4 % of duck farms had utilized conventional plastic greenhouses. In this facilities, there are difficulties in controlling indoor environments for raising duck. High rearing density in duct farms also made the environmental control difficult resulting in getting more stressed making their immune system weaker. Therefore, a facility is needed to having structurally enough solidity and high efficiency on the environmental control. So, new design plans of duck house have recently been conducted by National Institute of Animal Science in Korea. As a study in advance to establish standard, computational fluid dynamics (CFD) was used to estimate the aerodynamic problems according to the designs by means of overall and regional ventilation efficiencies quantitatively and qualitatively. Tracer gas decay (TGD) method was used to calculate ventilation rate according to the structural characteristics of duck houses including installation of indoor circulation fan. The results showed that natural ventilation rate was averagely 164 % higher than typically designed ventilation rate, 1 AER ($min^{-1}$). Meanwhile, mechanically ventilated duck houses made 81.2 % of summer ventilation rate requirement. Therefore, it is urgent to develop a new duck house considering more structural safety as well as higher efficiency of environmental control.

Well Log Analysis using Intelligent Reservoir Characterization (지능형 저류층 특성화 기법을 이용한 물리검층 자료 해석)

  • Lim Song-Se
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Petroleum reservoir characterization is a process for quantitatively describing various reservoir properties in spatial variability using all the available field data. Porosity and permeability are the two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. These properties have a significant impact on petroleum fields operations and reservoir management. In un-cored intervals and well of heterogeneous formation, porosity and permeability estimation from conventional well logs has a difficult and complex problem to solve by conventional statistical methods. This paper suggests an intelligent technique using fuzzy logic and neural network to determine reservoir properties from well logs. Fuzzy curve analysis based on fuzzy logics is used for selecting the best related well logs with core porosity and permeability data. Neural network is used as a nonlinear regression method to develop transformation between the selected well logs and core analysis data. The intelligent technique is demonstrated with an application to the well data in offshore Korea. The results show that this technique can make more accurate and reliable properties estimation compared with previously used methods. The intelligent technique can be utilized a powerful tool for reservoir characterization from well logs in oil and natural gas development projects.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

Case Study on Optimization of Send-out Operation in Liquefied Natural Gas Receiving Terminal (LNG 터미널 송출 운전 최적화 사례 연구)

  • Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.150-155
    • /
    • 2015
  • Recently, LNG receiving terminals have been widely constructed and expanded for an increase in LNG demand. Selection of the storage tank for send-out and estimation of send-out flow rate have significant influence to process operation and economics. In this study, a send-out flow rate of each storage tank is optimized in order to minimize the total BOG generation rate. Considering a size and characteristic of each storage tanks, BOG flow rates are estimated using a dynamic simulation with varying liquid levels in the tanks. The regression model is developed fitting BOG flow rates and tank liquid levels, which are boil off rate model to predict BOG flow rates with particular level data. The objective function and constraints including required total send-out flow rate and level limit in the tanks are formulated to optimize a send-out flow rate of each tank. This method for optimization of send-out operation is applied to the Incheon LNG receiving terminal considering two scenarios for various liquid levels and maximum and minimum required send-out flow rates. For maximum required send-out flow rate, this method achieves BOG reduction of 9% comparing with assumed conventional operation.

Simultaneous Determination and Monitoring of Bisphenols in River Water using Gas Chromatography-Mass Spectrometry (GC-MS 를 이용한 하천수 중 Bisphenol계 화합물의 동시분석 및 모니터링)

  • Kim, Jihyun;Choi, Jeong-Heui;Kang, Tae-Woo;Kang, Taegu;Hwang, Soon-Hong;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.154-160
    • /
    • 2017
  • BACKGROUND:This study was carried out to establish an efficient sample preparation for the simultaneous determination of bisphenols (BPs) in river water samples using gas chromatography-mass spectrometry (GC-MS). Sample preparation was examined with conventional extraction methods, such as solid-phase extraction (SPE) and liquid-liquid extraction (LLE), and their efficiency was compared with validation results, including linearity of calibration curve, method detection limit (MDL), limit of quantification (LOQ), accuracy, and precision. METHODS AND RESULTS:The BPs (bisphenol A, BPA; bisphenol B, BPB; bisphenol C, BPC; bisphenol E, BPE; bisphenol F, BPF; bisphenol S, BPS) were analyzed using GC-MS. The range of MDLs by SPE and LLE methods was $0.0005{\sim}0.0234{\mu}g/L$ and $0.0037{\sim}0.2034{\mu}g/L$, and that of LOQs was $0.0015{\sim}0.0744{\mu}g/L$ and $0.0117{\sim}0.6477{\mu}g/L$, respectively. The calibration curve obtained from standard solution of $0.004{\sim}4.0{\mu}g/L$ (SPE) and $0.016{\sim}16{\mu}g/L$ (LLE) showed good linearity with $r^2$ value of 0.9969 over. Accuracy was 93.2~108% and 97.4~120%, and precision was 1.7~4.6% and 0.7~6.5%, respectively. The values of MDL and LOQ resulted from the SPE method were higher than those from the LLE method, particularly those values of BPA were highest among the BPs. Based on the results, the SPE method was applied to determine the BPs in river water samples. Water samples were collected from mainstream, tributary and sewage wastewater treatment plants (SWTPs) in the Yeongsan river basin. The concentration of BPB, BPC, BPE, BPF and BPS were not detected in all sites, whereas BPA was ranged $0.0095{\sim}0.2583{\mu}g/L$, which was $0.0166{\sim}0.0810{\mu}g/L$ for mainstreams, $0.0095{\sim}0.2583{\mu}g/L$ for tributaries, $0.0352{\sim}0.1217{\mu}g/L$ for SWTPs. CONCLUSION: From these results, the SPE method was very effective for the simultaneous determination of BPs in river water samples using GC-MS. We provided that it is a convenient, reliable and sensitive method enough to monitor and understand the fate of the BPs in aquatic ecosystems.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.