DOI QR코드

DOI QR Code

Case Study on Optimization of Send-out Operation in Liquefied Natural Gas Receiving Terminal

LNG 터미널 송출 운전 최적화 사례 연구

  • Park, Chansaem (School of chemical and biological engineering, Seoul National University) ;
  • Han, Chonghun (School of chemical and biological engineering, Seoul National University)
  • 박찬샘 (서울대학교 화학생물공학부) ;
  • 한종훈 (서울대학교 화학생물공학부)
  • Received : 2014.07.02
  • Accepted : 2014.08.25
  • Published : 2015.04.01

Abstract

Recently, LNG receiving terminals have been widely constructed and expanded for an increase in LNG demand. Selection of the storage tank for send-out and estimation of send-out flow rate have significant influence to process operation and economics. In this study, a send-out flow rate of each storage tank is optimized in order to minimize the total BOG generation rate. Considering a size and characteristic of each storage tanks, BOG flow rates are estimated using a dynamic simulation with varying liquid levels in the tanks. The regression model is developed fitting BOG flow rates and tank liquid levels, which are boil off rate model to predict BOG flow rates with particular level data. The objective function and constraints including required total send-out flow rate and level limit in the tanks are formulated to optimize a send-out flow rate of each tank. This method for optimization of send-out operation is applied to the Incheon LNG receiving terminal considering two scenarios for various liquid levels and maximum and minimum required send-out flow rates. For maximum required send-out flow rate, this method achieves BOG reduction of 9% comparing with assumed conventional operation.

최근 전세계적인 액화천연가스(LNG) 수요의 증가로 인해 LNG 터미널의 건설이 크게 늘어나고 있으며 기존의 LNG 터미널도 저장시설을 확장하고 있는 추세이다. 이에 따라 LNG 터미널의 다수의 저장탱크가 존재할 때 LNG를 송출하게 될 탱크와 각 송출량을 선택하는 것은 전체 공정 운전에 중대한 영향을 미칠 수 있다. 본 연구에서는 전체 송출량이 정해져 있을 경우 레벨이 각기 다른 탱크들에 대해 발생하는 BOG 양을 최소화 할 수 있도록 각 탱크의 송출량을 최적화하는 연구를 수행하였다. 저장 탱크의 특성과 구조에 맞게 벽면과 바닥면에서 유입되는 열과 탱크 재질의 열전도도를 고려한 동적모델을 구성하였고, 레벨을 변화시켜 각 레벨에 따른 BOG 양을 계산하여 얻은 BOG 발생량을 탱크 레벨에 따라 지수함수로 회귀분석하였다. 이를 통해 탱크의 특성과 레벨에 따라 BOG 발생량을 예측할 수 있는 BOR(Boil-off Rate) 모델을 얻을 수 있었다. 개발한 BOR 모델을 이용하여 BOG 발생량을 최소화하는 목적함수를 설정하고 요구되는 송출량, 탱크내 레벨 제한, 탱크 당 가능한 송출량을 제한조건으로 설정하여 각 탱크의 최적 송출량을 결정하는 운전 최적화를 수행하였다. 이를 실제 운전되고 있는 인천 LNG 터미널의 18개 저장탱크에 적용하여 다양한 레벨이 분포되어 있고 총 송출량이 80,000 m3/day(최대 송출량)이 요구되는 시나리오에 대해 최적화를 수행하여 가정한 기존의 운전방법과 비교하였을 때 BOG 양을 약 9% 감소시킬 수 있었다.

Keywords

References

  1. Jung, M.-J., Cho, J. H., Ryu, W., LNG terminal design feedback from operator's practical improvements. Conference LNG terminal design feedback from operator's practical improvements.
  2. Deng, S., Jin, H., Cai, R. and Lin, R., "Novel Cogeneration Power System with Liquefied Natural Gas (LNG) Cryogenic Exergy Utilization," Energy, 29(4), 497-512(2004). https://doi.org/10.1016/j.energy.2003.11.001
  3. Kim, T. and Ro, S., "Power Augmentation of Combined Cycle Power Plants Using Cold Energy of Liquefied Natural Gas," Energy, 25(9), 841-856(2000). https://doi.org/10.1016/S0360-5442(00)00018-9
  4. Miyazaki, T., Kang, Y., Akisawa, A., Kashiwagi, T., "A Combined Power Cycle Using Refuse Incineration and LNG Cold Energy," Energy, 25(7), 639-655(2000). https://doi.org/10.1016/S0360-5442(00)00002-5
  5. Liu, H. and You, L., "Characteristics and Applications of the Cold Heat Exergy of Liquefied Natural Gas," Energy Conv. Manag., 40(14), 1515-1525(1999). https://doi.org/10.1016/S0196-8904(99)00046-1
  6. Qiang, W., Yanzhong, L. and Jiang, W., "Analysis of Power Cycle Based on Cold Energy of Liquefied Natural Gas and Low-grade Heat Source," Appl. Therm. Eng., 24(4), 539-548(2004). https://doi.org/10.1016/j.applthermaleng.2003.09.010
  7. Qiang, W., Yanzhong, L., Xi, C., "Exergy Analysis of Liquefied Natural Gas Cold Energy Recovering Cycles," Int. J. Energy Res., 29(1), 65-78(2005). https://doi.org/10.1002/er.1040
  8. Szargut, J., Szczygiel, I., "Utilization of the Cryogenic Exergy of Liquid Natural Gas (LNG) for the Production of Electricity," Energy, 34(7), 827-837(2009). https://doi.org/10.1016/j.energy.2009.02.015
  9. Lee, C.-J., Lim, Y., Park, C., Lee, S. and Han, C., Optimal Unloading Procedure for a Mixed Operation of Above-ground and In-ground LNG Storage Tank using Dynamic Simulation. Conference Optimal Unloading Procedure for a Mixed Operation of Above-ground and In-ground LNG Storage Tank using Dynamic Simulation. Elsevier, p. 437-44.
  10. Park, C., Lee, C.-J., Lim, Y., Lee, S. and Han, C., "Optimization of Recirculation Operating in Liquefied Natural Gas Receiving Terminal," Journal of the Taiwan Institute of Chemical Engineers, 41(4), 482-91(2010). https://doi.org/10.1016/j.jtice.2010.04.014
  11. Park, C., Song, K., Lee, S., Lim, Y. and Han, C., "Retrofit Design of a Boil-off Gas Handling Process in Liquefied Natural Gas Receiving Terminals," Energy, 44(1), 69-78(2012). https://doi.org/10.1016/j.energy.2012.02.053
  12. Ha, Y. and Lee, S., "A Study on the Method for Measuring the Live Calorific Value of LNG in Storage Tank Using LNG Densitometer," Korean Chem. Eng. Res., 49(1), 35-40(2011). https://doi.org/10.9713/kcer.2011.49.1.035
  13. Shin, M. W., Shin, D., Choi, S. H. and Yoon, E. S., "Optimal Operation of the Boil-off Gas Compression Process Using a Boil-off Rate Model for LNG Storage Tanks," Korean J. Chem. Eng., 25(1), 7-12(2008). https://doi.org/10.1007/s11814-008-0002-9
  14. Shin, M. W., Shin, D., Choi, S. H., Yoon, E. S. and Han, C., "Optimization of the Operation of Boil-off Gas Compressors at a Liquified Natural Gas Gasification Plant," Ind. Eng. Chem. Res., 46(20), 6540-6545(2007). https://doi.org/10.1021/ie061264i
  15. Li, Y., Chen, X., Chein, M.-H., "Flexible and Cost-effective Optimization of BOG (boil-off gas) Recondensation Process at LNG Receiving Terminals," Chem. Eng. Res. Des., 90(10), 1500-1555 (2012). https://doi.org/10.1016/j.cherd.2012.01.013
  16. Kwon, Y.-H., "Construction Site of Daewoo E&C-Inceheon LNG Receiving Terminal," Journal of the Korea Concrete Institute, 11(5), 85-89(1999).
  17. Son, Y., Ha, J., Um, T., Lee, J., Baek, S. and Park, C., "The Method of Thermal Crack Control About the LNG Tank Wall in Water," Spring Conference of the Korea Concrete Institute, 637-640(2008).
  18. Kim, T., Ha, J., Ryu, J., Lee, J. and Kwon, Y., "Thermal Crack Control of LNG Tank Roof," Autumn Conference of the Korea Concrete Institute, 421-424(2002).
  19. Yang, I. H. and Kim, J. K., "Construction of Above-Ground Storage Tanks in Incheon LNG Receiving Terminal," Journal of the Korea Concrete Institute, 13(4), 89-93(2001).
  20. Lee, K., Lee, S. and Kim, Y. K., "Establishment of Realtime Monitoring System for the Analysis of Soil Behavior at Incheon LNG Receiving Terminal," Autumn Conference of the Korea Institue of Gas, 71-77(2004).
  21. Pfundstein, M., Gellert, R., Spitzner, M. and Rudolphi, A., Insulating materials: principles, materials, applications: Walter de Gruyter, 2012.
  22. Hashemi, H. and Wesson, H., "Cut LNG Storage Costs," Hydrocarb. Process., 50(8), 117-120(1971).
  23. Park, S., Park, C., Lee, U., Jung, I., Na, J., Kshetrimayum, K. and Han, C., "Comparative Study of Process Integration and Retrofit Design of Liquefied Natural gas (LNG) Regasification Process Based on Exergy Analyses: A Case Study of LNG Regasification Process in South Korea," Ind. Eng. Chem. Res., accepted(2014).

Cited by

  1. 역설계를 통한 Flip-Flap 밸브형 분리식 커플링에 관한 연구 vol.15, pp.4, 2016, https://doi.org/10.14775/ksmpe.2016.15.4.016