• Title/Summary/Keyword: controller synthesis$H_2$ performance

Search Result 21, Processing Time 0.02 seconds

Mixed $H_2/H_{$\infty}$ and $\mu$-synthesis Approach to the Coupled Three-Inertia Problem (혼합 $H_2/H_{$\infty}$$\mu$-설계이론을 이용한 3관성 문제의 해법)

  • Choe, Yeon-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.896-903
    • /
    • 2001
  • This study investigates the use of mixed $H_2/H_{$\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertial system that reflects the dynamics of mechanical vibrations. This kind of problem requires to be satisfied the robust performance (both in the time and frequency-domain specifications). We, first, adopt the mixed $H_2/H_{$\infty}$ theory to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty. This process permits higher levels of controller authority and reduces the conservativeness of the controller. Finally, the feedforward controller is also used to improve the transient response of the output. We confirm that all design specifications except a complementary sensitivity condition can be achieved.

  • PDF

Comparison Study of H-infinity Controller Design Algorithms for Spacecraft Attitude Control (인공위성 자세제어를 위한 H-infinity 제어기 설계 알고리즘 비교 연구)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.57-69
    • /
    • 2016
  • There are three kinds of algorithms(2-ARE, mu-synthesis, LMI) for controller design using closed-loop shaping method. This paper provides the summary of background theory of three algorithms and $H_{\infty}$ controller design results for spacecraft attitude control using the three controller design tools of Matlab$^{TM}$ Toolbox for comparison. As a result, it reveals that LMI design method is more reliable as well as easier than others for spacecraft attitude control design. Comparison results are as follow: 2-ARE method and LMI method provide almost same results in robust stability, robust performance and control authority level. But 2-ARE method is more sensitive than LMI method with respect to proper design of weighting functions: 2-ARE method is more difficult than LMI method in weighting function design. The design result of mu-synthesis method shows worse performance and requires bigger control authority than others.

$H_\infty$ Optimal Controller Synthesis by the Frequency Domain Analysis of Weighting Function (가중함수의 주파수 영역 해석에 따른 $H_\infty$ 최적 제어기 구성)

  • Kim, Yong-Gyu;Ryu, Chang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.8-15
    • /
    • 2000
  • This study presents an H$_{\infty}$ optimal controller synthesis by the frequency domain analysis of weighting function. The main purpose of our study is to visualize weighting function domains and open loop transfer function domains that satisfy robustness and performance. Also we aim to simplify the iterative algorithm for H$\infty$ optimal controller synthesis. We report that the designed regulator by the proposed method in this paper satisfies the desired specifications and performance in spite of the plant uncertainty variation at any operating point.

  • PDF

Robust Controller Design for Hydraulic Dipod Platform Based on 2-DOF H Controller Synthesis Framework (2자유도 H 제어기 종합 프레임웍에 기반한 유압식 Dipod 플랫폼의 강인제어기 설계)

  • Lee, Young-Hoon;Cho, Taik-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.805-814
    • /
    • 2013
  • A hydraulic dipod platform is used for tracking and stabilizing an antenna system to designate a satellite on a moving vehicle. The 2-DOF controller is very well suited to this controller design object because it is more flexible than the 1-DOF controller when the design object is not only the consideration between stabilizing and tracking but also the trade-off between performance and robustness. The 2-DOF controller synthesis based on the $H_{\infty}$ framework is divided into two design procedures. In this hydraulic dipod platform example, the single-step method shows better performance whereas the two-step method shows better robustness. The difference between these two synthesis results is compared using the structural property of the interconnection system matrix.

Vibration Control of a Glass-Fiber Reinforced Termoplastic Composite Beam (유리섬유를 함유한 열가소성 복합재 보의 진동제어)

  • 권대규;윤여흥;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.11-14
    • /
    • 2000
  • This paper presents the vibration control of a glass-fiber reinforced thermoplastic composite beam with a distributed PVDF sensor and piezo-ceramic achlator. The three types of different controllen which are PID, H$\infty$ , and p-synthesis ontrollcr are employed to achieve vibration suppression in the transient vibration of composite beam. In the H$\infty$ , controller design, 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to struchred uncertainty is adopled Lo suppress the vibration. If the controller designed by H$\infty$ , theory does not satisfy control performance, it is improved by $\mu$ -synthesis method with D-K iteration so that the$\mu$-contoller based on the structured singular value satisfies the nominal performance and robust performance Simulations and experiments were carried out with the designed controllers m order to demonstrate the suppression efficiency of each controller.

  • PDF

Robust Control of Two Mass Spring System with Parameter Variations (매개변수 변동을 갖는 2관성 시스템의 강건제어)

  • 조도현;이종용;이상효
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.729-737
    • /
    • 1998
  • In this paper, using $\mu$ synthesis algorithm with structured uncertainty, we design controller and apply it for the Two-Inertia resonance(TMS: Two Mass Spring) system. The TMS system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. Furthermore, when vibration frequency for the system is varying by reason of parameter variations, we should consider parameter variations in controller design. Then, we design two other controller schemes of the PI controller and the standard $H_{\infty}$ controller and compare these controllers with the controller designed by the $\mu$ synthesis robust control method by using simulations and experiments.

  • PDF

Robust Control of a Glass Fiber Composite Beam using $\mu$-Synthesis Algorithm

  • Lee, Seong-cheol;Kwon, Tae-Kyu;Yun, Yeo-Hung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. $1^{st}$ and $2^{nd}$ natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by $H_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

Robust Control of a Glass-Fiber Reinforced Composite Beam using $\mu$-Synthesis Algorithm

  • Yun, Yeo-Hung;Lee, Young-Choon;Kwon, Tae-Kyu;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.498-498
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

A Design of an Active Noise Controller in a Communication Headset (통신용 헤드셋을 위한 능동소음제어기의 설계)

  • Chung, Tae-Jin;Chung, Chan-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.102-108
    • /
    • 2001
  • In this paper, an active noise controller for a communication headset was designed. In a communication headset, there exist information signals such as voices from the end for the communication line as well as also, undesirable noises with are induced by external noise sources such as engine noises. Therefore, it is necessary to reduce the external noises for clear hearing of the communication signals. This problem was solved by robust H(sub)$\infty$ controller to reduce noise and a compensator for information signals The designed controller was implemented using TMS320C31 DSP Op-amp, and several experiments were performed to verify its performance. The results showed that the controller reduces the undesirable noises sufficiently, while communication signals are not reduced.

  • PDF

Response Characteristics of Aeroelastic Systems Using Robust Controller (강인한 제어기를 이용한 공탄성 시스템의 응답특성)

  • Na, Sungsoo;Jeong, In-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.437-444
    • /
    • 2005
  • This paper presents a robust aeroelastic control methodology of a two dimensional flapped wing system exposed to an incompressible flow field. A robust controller is designed using a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of $H_{\infty}$ performance and H₂ performance satisfying constraints on the closed loop pole locations in the presence of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of LMI approach in damping out the aeroelastic response of 3-DOF flapped wing system.