• 제목/요약/키워드: controller operator

검색결과 246건 처리시간 0.03초

Self-Tuning PID Controller Based on PLC

  • Phonphithak, A.;Pannil, P.;Suesut, T.;Masuchun, R.;Julsereewong, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.272-276
    • /
    • 2004
  • The conventional PID (Proportional-Integral-Derivative) control technique is widely used for the process control in many industries since it is simple in structure and provides the good response. Nowadays, this control technique has been developed on the Programmable Logic Controller (PLC) to use for the process control loop. However, using this technique is difficult when tuning the PID parameters ($K_p$, $T_i$ and $T_d$) to achieve the best response. Moreover, trial-and-error procedure along with the operator experiences are required to obtain the best results when tuning the PID controller parameters. This paper proposes the self-tuning PID controller based on PLC for the process control in the industries. The proposed self-tuning PID controller uses the PLC-based PID structures to control the process production. The proposed PID tuning utilizes the PLC to synthesize and analyze controller parameter as well as to tune for appropriate parameters using Dahlin method and extrapolation. Experimental results using a self-tuning PID controller to control temperature of the oven show that the controller developed is capable of controlling the process very effectively and provides a good response.

  • PDF

마스터-슬레이브형 원격 조작기의 쌍방향 서보제어기 제작에 관한 연구 (A bilateral servo system design for master-slave manipulators)

  • 김기엽;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.524-527
    • /
    • 1988
  • Basic types of bilateral servo systems were described and practical consideration in the bilateral servo controller design was introduced. Power assistance to the operator is essential for high efficiency and accurate force reflection is necessary for dexterous manipulation. This paper shows a controller structure under development at KIMM which employs nonlinear friction compensation and memory based gravity compensation technique for efficiency and dexterity.

  • PDF

퍼지-뉴럴 융합을 이용한 로보트 Gripper의 힘 제어기 (Force controller of the robot gripper using fuzzy-neural fusion)

  • 임광우;김성현;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.861-865
    • /
    • 1991
  • In general, the fusion of neural network and fuzzy logic theory is based on the fact that neural network and fuzzy logic theory have the common properties that 1) the activation function of a neuron is similar to the membership function of fuzzy variable, and 2) the functions of summation and products of neural network are similar to the Max-Min operator of fuzzy logics. In this paper, a fuzzy-neural network will be proposed and a force controller of the robot gripper, utilizing the fuzzy-neural network, will be presented. The effectiveness of the proposed strategy will be demonstrated by computer simulation.

  • PDF

DC 모터 속도제어를 위한 퍼지 알고리즘 설계 (Design of fuzzy algorithms for DC motor speed control)

  • 최종수;김성중;최한수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.676-680
    • /
    • 1991
  • This paper proposes fuzzy control algorithms for a DC moter speed control. The proposed algorithms are constructed by the fuzzy controller and the fuzzy compensator. The fuzzy compensator used to overcome rapidly the effects caused by the disturbance and is mounted outside of the closed loop of the fuzzy controller. The fuzzy control rules are established from human operator experience and basic engineering knowledge about the process dynamics. Simulation results show that the proposed algorithms compensate for parameter variation and disturbance.

  • PDF

Fuzzy logic제어기의 구성 (The construction of the fuzzy logic controller)

  • 김성호;박태홍;이동원;박귀태;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.418-420
    • /
    • 1989
  • Many complex industrial processes cannot be satisfactorily controlled using the results of modern control theory, mainly because their precise structure is unknown. However this is often balanced by a considerable amount of operator's heuristic knowledges for the process which is difficult to quantify and utilize. Fuzzy set theory is a relatively new concept which allows this qualitativeness to be expressed rigorously and therefore in this paper modified PI type fuzzy logic controller is introduced and its usefulness for control is assessed.

  • PDF

PID 서보제어기를 이용한 곡면유리 자동성형 시스템 개발 (Development of Curved-Glass Automatic Shaping System using PID Servo-Drivers)

  • 유병국;양근호
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.161-164
    • /
    • 2003
  • This research presents the parallel control scheme of PID servo-driver for shaping of the curved glass. The designed system consists of a PC, main controller and 11 servo-drivers. Each elements are connected by using RS-232C and 8-bit bus communication. In order to guarantee the stability and the control performance, we use the LM629, a precision PID motion controller, and LMD18200, a H-bridge on the servo-drivers. PC calculates position values of 11 DC motors by using the pre-determined curvature value and offers the user interface environment operator.

  • PDF

유전자 알고리즘을 이용한 자율주형로봇의 진화진 관한 연구 (Evolution of autonomous mobile robot using genetic algorithms)

  • 유재영;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2953-2955
    • /
    • 1999
  • In this paper, the concept of evolvable hardware and evolutionary robotics are introduced and constructing the mobile robot controller without human operator is suggested. The robot controller is evolved to avoid obstacles by genetic learning which determines the weights between sensor inputs and motor outputs. Genetic algorithms which is executed in a computer(PC) searches the best weights by interacting with robot performance under it's environment. The experiment is done by real mobile robot Khepera and a simple GA.

  • PDF

농용트랙터의 자동조향을 위한 퍼지제어와 적응제어의 비교 (Comparison between Fuzzy and Adaptive Controls for Automatic Steering of Agricultural Tractors)

  • 노광모
    • Journal of Biosystems Engineering
    • /
    • 제21권3호
    • /
    • pp.283-292
    • /
    • 1996
  • Automatic guidance of farm tractors would improve productivity by reducing operator fatigue and increasing machine performance. To control tractors within $\pm$5cm of the desired path, fuzzy and adaptive steering controllers were developed to evaluate their characteristics and performance. Two input variables were position and yaw errors, and a steering command was fed to tractor model as controller output. Trapezoidal membership functions were used in the fuzzy controller, and a minimum-variance adaptive controller was implemented into the 2-DOF discrete-time input-output model. For unit-step and composite paths, a dynamic tractor simulator was used to test the controllers developed. The results showed that both controllers could control the tractor within $\pm$5cm error from the defined path and the position error of tractor by fuzzy controller was the bigger of the two. Through simulations, the output of self-tuning adaptive controller was relatively smooth, but the fuzzy controller was very sensitive by the change of gain and the shape of membership functions. Contrarily, modeling procedure of the fuzzy controller was simple, but the adaptive controller had very complex procedure of design and showed that control performance was affected greatly by the order of its model.

  • PDF

Automatic PID Controller Parameter Analyzer

  • Pannil, Pittaya;Julsereewong, Prasit;Ukakimaparn, Prapart;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.288-291
    • /
    • 1999
  • The PID (Proportional-Integral-Derivative) controller is widely used in the industries for more than fifty years with the well known Ziegler-Nichols tuning method and others varieties. However, most of the PID controller being used in the real practice still require trial and error adjustment for each process after the tuning method is done, which is consuming of time and needs the operator experiences to obtain the best results for the controller parameter. In order to reduce the inconvenience in the controller tuning, this paper presents a design of an automatic PID controller parameter analyzer being used as a support instrument in the industrial process control. This analyzer is designed based on the tuning formula of Dahlin to synthesize the PID controller parameter. Using this analyzer, the time to be spent in the trial and error procedures and its complexity can be neglected. Experimental results using PID controller parameter synthesized from this analyzer to the liquid level control plant model and the fluid flow control plant model show that the responses of the controlled systems can be efficiently controlled without any difficulty in mathemathical computation.

  • PDF

힘 제어 기반의 로봇 팔과 인간 팔의 상호 작용을 위한 임베디드 시스템 설계 (Implementation of an Embedded System for an Interaction between Robot Arm and Human Arm Based on Force Control)

  • 전효원;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1096-1101
    • /
    • 2009
  • In this paper, an embedded system has been designed for force control application to interact between a robot arm and a human operator. Force induced by the human operator is converted to the desired position information for the robot to follow. For smooth operations, the impedance force control algorithm is utilized to represent interaction between the robot and the human operator by filtering the force. To improve the performance of position control of the robot arm, a velocity term has been obtained and tested by several filters. A PD controller for position control has been implemented on an FPGA as well. Experimental studies are conducted with the ROBOKER to test the functionality of the designed hardware.