• 제목/요약/키워드: controller gain

검색결과 1,151건 처리시간 0.025초

MW급 직접구동형 풍력터빈시스템을 위한 영구자석 동기발전기의 게인 스케쥴링 속도제어기에 대한 연구 (A Study on the Gain Scheduling Speed Controller of Permanent Magnet Synchronous Generators for MW-Class Direct-Driven Wind Turbine Systems)

  • 최영식;유동녕;최한호;정진우
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.48-59
    • /
    • 2011
  • This paper presents a new gain scheduling speed controller of permanent magnet synchronous generators(PMSG) for MW-class direct-driven wind turbine systems. The proposed gain scheduling speed controller performs the speed tracking at more than one operating point, and the first-order torque observer estimates the turbine torque which is needed to precisely control the speed of PMSG. The proposed speed controller verifies that the PMSG can successfully follow the reference speed which is determined via the maximum power point tracking(MPPT) control and pitch control under turbulent wind conditions. The proposed speed control algorithm is simulated using Simulink and its performance is confirmed through comparison with the results by PI control method.

퍼지 이득 스케쥴링 기법을 이용한 무인 잠수정의 심도제어기 설계 - HILS 검증 (Depth Controller Design using Fuzzy Gain Scheduling Method of a Autonomous Underwater Vehicle - Verification by HILS)

  • 황종현;박세원;김문환;이상영;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.791-796
    • /
    • 2013
  • This paper proposes a fuzzy logic gain scheduling method for depth controller of the AUV (Autonomous Underwater Vehicle). Gains of depth controller are calculated by using multi-loop root locus technique. Fuzzy logic based gain scheduling approach is used to modify multi-loop gains as control condition. It is illustrated by simulations that the proposed fuzzy logic gain scheduling method yields smaller rising time and overshoot compared to the fixed-gain controller. Finally, being implemented on real hardwares, all the proposed algorithms are validated with integrations of hardware and software altogether by HILS.

가변이득을 가지는 디지털제어 단상 역률보상회로 (Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain)

  • 백주원;신병철;정창용;이영운;유동욱;김홍근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF

퍼지 게인 스케쥴링을 이용한 CSTR의 온도 제어 (Temperature Control of a CSTR using Fuzzy Gain Scheduling)

  • 김종화;고강영;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.839-845
    • /
    • 2013
  • A CSTR (Continuous Stirred Tank Reactor) is a highly nonlinear process with varying parameters during operation. Therefore, tuning of the controller and determining the transition policy of controller parameters are required to guarantee the best performance of the CSTR for overall operating regions. In this paper, a methodology employing the 2DOF (Two-Degree-of-Freedom) PID controller, the anti-windup technique and a fuzzy gain scheduler is presented for the temperature control of the CSTR. First, both a local model and an EA (Evolutionary Algorithm) are used to tune the optimal controller parameters at each operating region by minimizing the IAE (Integral of Absolute Error). Then, a set of controller parameters are expressed as functions of the gain scheduling variable. Those functions are implemented using a set of "if-then" fuzzy rules, which is of Sugeno's form. Simulation works for reference tracking, disturbance rejecting and noise rejecting performances show the feasibility of using the proposed method.

복소 벡터 동기좌표계 비례 적분 전류 제어기의 안티와인드업 이득 설정 (Anti-windup for Complex Vector Synchronous Frame PI Current Controller)

  • 유현재;정유석;설승기
    • 전력전자학회논문지
    • /
    • 제11권5호
    • /
    • pp.404-408
    • /
    • 2006
  • 본 논문에서는 복소 벡터 동기 좌표계 비례 적분(PI) 전류 제어기의 안티 와인드업(anti-windup)이득 설정에 대해 논의한다. 복소 벡터 동기 좌표계 비례 적분 전류 제어기는 시스템 제정수 변동에 기존의 비례 적분 전류 제어기 보다 더 강인한 특성을 보인다. 복소 벡터 전류 제어기 역시 적분기를 포함하고 있으며, 엑츄에이터(actuator)의 물리적인 한계로 전압이 포화되는 경우에는 안티 와인드업이 필요하게 되고, 적절치 못한 안티 와인드업 이득 설정은 제어 시스템의 동특성을 저하시킬 수 있다. 따라서 복소 벡터 동기 좌표계 비례 적분 전류 제어기에 적합한 안티 와인드업 이득을 제안하였고, 제안된 알고리즘의 유효성은 실험을 통하여 검증하였다.

Adjusting GPC Control Parameters Based on Gain and Phase Margins

  • Haeri, Mohammad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1838-1842
    • /
    • 2004
  • Gain and phase margins of a first order plus delayed time (FOPDT) process controlled by generalized predictive controller (GPC) are related to the control parameters ${\lambda}$ (control move suppression parameter) and ${\alpha}$ (smoothing filter coefficient) and the normalized delay of the process. Variation ranges of gain and phase margins are determined. It is shown that the margins cannot be assigned independently for a wide range of variation and the range is narrowing by increase of the normalized delay of the process. And finally curves are given to use for adjustment of the controller parameters in order to obtain a specific pair of gain and phase margins.

  • PDF

A Study on High Precision Temperature Control of an Oil Cooler for Machine Tools Using Hot-gas Bypass Method

  • Jung, Young-Mi;Byun, Jong-Yeong;Yoon, Jung-In;Jeong, Seok-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권7호
    • /
    • pp.1003-1011
    • /
    • 2009
  • This study aims at precise control of oil outlet temperature in the oil cooler system of machine tools for enhancement of working speed and processing accuracy. PID control logic is adopted to obtain desired oil outlet temperature of the oil cooler system with hot-gas bypass method. We showed that the gains of PID controller could be easily determined by using gain tuning methods to get the gain of PID controller without any mathematical model. We also investigated various gain tuning methods to design the gains of PID and compared each control performance for selecting the optimal tuning method on the hot gas bypass method through experiments. Moreover, we confirmed excellent control performance with proposed PI controller gain even though disturbances were abruptly added to the experimental system.

Stability Improvement of Distributed Power Generation Systems with an LCL-Filter Using Gain Scheduling Based on Grid Impedance Estimations

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.599-605
    • /
    • 2011
  • This paper proposes a gain scheduling method that improves the stability of grid-connected systems employing an LCL-filter. The method adjusts the current controller gain through an estimation of the grid impedance in order to reduce the resonance that occurs when using an LCL-filter to reduce switching harmonics. An LCL-filter typically has a frequency spectrum with a resonance peak. A change of the grid-impedance results in a change to the resonant frequency. Therefore an LCL-filter needs a damping method that is applicable when changing the grid impedance for stable system control. The proposed method instantaneously estimates the grid impedance and observes the resonant frequency at the same time. Consequently, the proposed method adjusts the current controller gain using a gain scheduling method in order to guarantee current controller stability when a change in the resonant frequency occurs. The effectiveness of the proposed method has been verified by simulations and experimental results.

Rhino XR-2 로보트의 퍼지 혼성 제어 (Fuzzy Hybrid Control of Rhino XR-2 Robot)

  • 변대열;성홍석;이쾌희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.299-303
    • /
    • 1993
  • There can be two methods in control systems: one is to use a linear controller, the other is to use a nonlinear controller. The PID controller and the fuzzy controller can be said to belong the linear and the nonlinear controller respectively. In this paper, a new hybrid controller which is consist of the linear PID controller of which the gain is tuned and the nonlinear self tuning fuzzy controller is proposed. In the PID controller, an algorithm which parameterizes the proportional, the intergral, and the derivative gain as a single parameter is used to improve the performance of the PID controller. In the self tuning fuzzy controller, an algorithm which changes the shape of the triangle membership function and changes the scaling factor which is multiplied to the error and the error change. The evaluation of the performance of the suggested algorithm is carried on by the simulation for the Rhino XH-2 robot manipulator with 5 links revolute joints.

  • PDF

MRAC를 이용한 산업용 로봇의 실시간 게인 동조 (On-line gain Tuning of Industrial Robot Using MRAC)

  • 하회권;허남;이영진;이만형
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.76-82
    • /
    • 1999
  • During operating given working a robot manipulator makes some problems such as the accumulation of the error or the deviation from the command trajectory. These problems are mainly due to the disturbance noise or unmodeled system parameters. To solve these problems most of robot manipulators equip the controller. But if exact controller gains are not seleced we can't decrease the working efficiency(such as compensation about error or deviation) of the robot manipulator. So in this paper we present the controller gain tuning law by which we can find the controller gain which satisfies the per-formance specification of the robot manipulator during working of the robot. The proposed algorithm is derived from the Laypunov direct method. And by the simulation on the 4-axis SCARA type robot(SAMSUNG SM5 Robot) we guarantee the performance of this algorithm.

  • PDF