• Title/Summary/Keyword: controller gain

Search Result 1,151, Processing Time 0.027 seconds

Simulation of active vibration control using phase adjusting method with high speed flexible rotor system (초고속 유연회전체의 위상조절법을 이용한 능동진동제어 시뮬레이션)

  • Na J.B.;Kim K.S.;Lee W.C.;Kim C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.425-426
    • /
    • 2006
  • This study proposes a new simulation method of high speed rotor system with the dynamic model using multi body dynamic analysis tool and with a new phase modulating technique as a system control algorithm. A dynamic model of high speed rotor system was built by, ADAMS, commercial multi body dynamic program. The phase modulating technique is a new control algorithm for a rotor system. This algorithm can control system using an adaptive proportional gain and an adaptive phase which are obtained from periodical input signal. To make control system, a ADAMS model and component parameters and phase controller was composed by Matlab Simulink And simulate it.

  • PDF

Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage (PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계)

  • Park, J.S.;Jeong, Kyu-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

A Study on the Vehicle Digital Broadcasting System of Active Electronic Control Method using Phase Shifter (위상변위기를 이용한 능동전자제어방식의 차량용 디지털 위성방송 시스템에 관한 연구)

  • 김기열;이상호;박종국
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.903-908
    • /
    • 1999
  • In this paper, it is proposed the phase shifter array active system to receive digital satellite broadcasting for vehicle. To receive satellite broadcasting data in vehicle, it is inevitable to have active antenna system, which traces the satellite in real time. Also if it is used in vehicle, it must be thin and light structure. To develop this type of antenna system, several techniques should be integrated properly. These are the design and manufacturing technique of high gain antenna, algorithm for tracking satellite and its manufacturing technique, controller design and manufacturing technique, system integration technique and so on. The validity of the proposed AVDBS system was confirmed by simulation and experimental results.

  • PDF

A Design on Optimal Satellite-Tracking Antenna Control system Using GA (GA를 이용한 최적 위성추적 안테나 제어 시스템의 설계)

  • Jeong, H.S.;Kim, D.W.;Hwang, H.J.;Kim, J.T.;Kim, G.Y.;Kim, Y.H.;Cho, W.R.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.549-551
    • /
    • 1998
  • In this paper, we design the optimal satellite-tracking antenna $H_{\infty}$ control system using genetic algorithm(GA). To do this, we give gain and dynamics parameters to the weighting functions and apply GA with reference model to the optimal determination of weighting functions and design parameter ${\gamma}$ that are given by Glover-Doyle algorithm which can design $H_{\infty}$ controller in the state space. These weighting functions and design parameter ${\gamma}$ are simultaneously optimized in tile search domain guaranteeing the robust stability of closed-loop system. The effectiveness of this satellite-tracking antenna $H_{\infty}$ control system is verified by computer simulation.

  • PDF

A Design on Model Following ${\mu}$-Synthesis Control System for Optimal Fuel-Injection of Diesel Engine Using Genetic Algorithms (유전 알고리즘을 이용한 디젤 엔진의 최적 연료주입 모델 추종형 ${\mu}$-합성 제어 시스템의 설계)

  • Kim, Dong-Wan;Hwang, Hyun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.587-589
    • /
    • 1997
  • In this paper we design the model following ${\mu}$-synthesis control system for optimal fuel-injection of diesel engine using genetic algorithms. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithms with reference model to the optimal determination of weighting functions that are given by D-K iteration method which can design ${\mu}$-synthesis controller in the state space. These weighting functions are optimized simultaneously in the search domain selected adequately. The effectiveness of this ${\mu}$-synthesis control system for fuel-injection is verified by computer simulation.

  • PDF

Convergence of the Filtered-x Least Mean Fourth Algorithm for Active Noise Control (능동 소음 제어를 위한 Filtered-x 최소 평균 네제곱 알고리듬의 수렴분석)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.616-625
    • /
    • 2002
  • In this paper, we drove the filtered-x least mean fourth (FXLMF) algorithm where the error raised to the power of four is minimized and analyzed its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. The application of the FXLMF adaptive filter to active noise control requires to estimate the transfer characteristics of the acoustic path between the output and the error signal of the adaptive controller. The results of the convergence analysis of the FXLMF algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that the convergence behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant.

Laser Doppler Vibrometer using the Bulk Homodyne Interferometer (호모다인 간섭계를 이용한 레이저 진동 측정기의 개발)

  • 라종필;경용수;왕세명;김경석;박기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.397-402
    • /
    • 2003
  • The FM demodulation method for a bulk homodyne laser interferometer is presented. The Doppler frequency that represents the surface velocity of a vibrating object is obtained by using the bulk homodyne laser interferometer, and converted to the voltage signal by using the proposed analogue FM demodulation circuit. The DC offsets of the interferent signals that are obtained from the bulk homodyne interferometer are eliminated by using a simple subtraction. The new method for compensation of the asymmetry of each channels is presented. The light power variation of the interferometer is normalized by using the Auto Gain Controller(AGC). The proposed FM demodulation algorithm is proved by the theoretical method, and validated by the experimental results. In experiments, the proposed FM demodulation algorithm is compared with the conventional demodulation methods.

  • PDF

Dynamic Response of a 2.75MW Wind Turbine Applying Torque Control Method Based on Torque-Mode (토크모드 기반의 토크 제어 방법을 적용한 2.75MW 풍력터빈의 동적 응답)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2013
  • Torque control methods of wind turbine are mainly classified into two methods: torque-mode and speed-mode methods. The traditional torque-mode method, in which generator torque proportional to square of generator speed is determined, has been chosen in many wind turbines but its response is slower as they are larger in multi-MW size. Torque control methods based on both speed-mode and torque-mode can be used to make response of wind turbine faster. In this paper, two torque control methods based on the traditional torque-mode method are applied to a 2.75 MW wind turbine. It is shown through some simulation results for real turbulence wind speeds that torque control method based on torque-mode has the merit of reducing fluctuations of generated power than PI controller based on speed-mode.

Robust Tracking of Constrained Uncertain Linear Systems using a High-gain Disturbance Observer (고이득 외란 관측기에 기반한 입력 제약 조건이 있는 불확실한 선형 시스템의 강인 추종 제어)

  • Yoon, Mun Chae;Kim, Jung-Su;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • This paper proposes a robust tracking control for constrained uncertain linear systems by combining a disturbance observer (DOB) and linear matrix inequality (LMI) based state feedback control. To this end, the state feedback control is designed for the nominal system and then a DOB based feed-forward control is added to reject uncertainties. In doing so, the DOB and state feedback controller are joined in a way that the combined control satisfies the input constraints and closed loop stability is guaranteed. Simulation results are provided to show that the proposed control scheme successfully stabilizes uncertain systems.

A Vertical Line Following Guidance Law Design (수직면 직선추종유도법칙 설계)

  • Whang, Ick-Ho;Cho, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1309-1313
    • /
    • 2010
  • In this paper, we propose a novel guidance law for controlling an UAV(Unmanned Air-Vehicle) to follow a reference line in vertical plane. A kinematics model representing the relative motion of the UAV to the reference line is derived. And then LQR(Linear Quadratic Regulator) theory is applied to the model to derive the VLFG(Vertical Line Following Guidance) law. The resultant guidance law forms a gain-scheduling controller scheduled by a simple parameter $\sigma$ which is a function of the UAV's velocity, axial acceleration, gravity, and the slope of the reference line. Also derived is a stability condition for the $\sigma$ variation based on Lyapunov theory. Simulation results show that the proposed guidance law can be applied effectively to UAV guidance algorithm design.