• 제목/요약/키워드: control-Lyapunov function

검색결과 374건 처리시간 0.023초

NNDI decentralized evolved intelligent stabilization of large-scale systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.1-15
    • /
    • 2022
  • This article focuses on stability analysis and fuzzy controller synthesis for large neural network (NN) systems consisting of several interconnected subsystems represented by the NN model. Advanced and fuzzy NN differential inclusion (NNDI) for stability based on the developed algorithm with H infinity can be designed based on the evolved biological design. This representation is constructed using sector linearity for NN models. Sector linearity transforms a non-linear model into a linear model based on proposed operations. New sufficient conditions are realized in the form of LMI (linear matrix inequalities) to ensure the asymptotic stability of the trans-Lyapunov function. This transforms the nonlinear model into a linear model based on multiple rules. At last, a numerical case study with simulations is derived as illustration to prove its feasibility in real nonlinear structures.

오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계 (The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error)

  • 김현우;윤육현;정진한;박장현
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.

상태 및 입력 시간지연을 갖는 이산 퍼지 마코비안 점프 시스템의 H 제어 (H Control for Discrete-Time Fuzzy Markovian Jump Systems with State and Input Time Delays)

  • 이갑래
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.28-35
    • /
    • 2012
  • 본 논문에서는 상태변수 및 입력변수에 시간지연을 가지는 이산 퍼지 마코비안 점프 시스템의 $H_{\infty}$ 퍼지 제어기 설계 방법을 나타낸다. 시간지연 퍼지 마코비안 점프 시스템은 마코비안 점프 파라미터를 갖는 시간 지연 비선형 시스템을 Takagi-Sugeno 퍼지 모델로 표현된 것이다. 확률 리아프노프(Lyapunov) 함수를 이용하여 폐루프 시스템이 안정하며 $H_{\infty}$ 성능 조건을 만족하는 조건식을 유도한다. 확률 리아프노프 함수는 시스템 모드에 따라 변하는 함수이다. 유도된 조건식으로부터 제어기 존재 조건을 선형행렬부등식으로 나타내며, 제어기는 선형행렬부등식의 해로부터 직접 구할 수 있다. 수치적 예제 및 컴퓨터 시뮬레이션을 통하여 제안된 방법의 타당성을 보인다.

포화입력을 가지는 시간지연 비선형 시스템의 퍼지 H2/H 제어기 설계 (Fuzzy H2/H Controller Design for Delayed Nonlinear Systems with Saturating Input)

  • 조희수;이갑래;박홍배
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.239-245
    • /
    • 2002
  • 본 논문에서는 입력에 제한이 있는 시간지연 비선형 시스템에 대한 퍼지 $H_2/H_{\infty}$ 제어기 설계 방법을 제시한다. 포화입력을 갖는 시간지연 비선형 시스템을 시간지연과 포화입력을 갖는 Takagi-Sugeno 퍼지 모델로 표현하고 병렬분산보상(PDC)의 개념을 이용하여 제어기를 설계한다. Lyapunov 함수를 이용하여 시간지연과 포화입력을 갖는 $H_2/H_{\infty}$ 퍼지모델에 대한 폐루프 시스템의 안정성 조건과 LQ 성능을 최소화하는 조건을 유도하고, 퍼지 $H_2/H_{\infty}$ 제어기가 존재할 충분조건을 선형행렬부등식(LMI: liner matrix inequality)을 이용하여 구한다. 제어기는 선형행렬부등식의 해를 구하므로써 바로 구할 수 있으며, 설계된 퍼지 $H_2/H_{\infty}$ 제어기는 $H_{\infty}$ 노옴 한계값을 만족하면서 LQ성능의 상한값을 최소화한다. 마지막으로 포화압력으로 포화압력을 가지는 시간지연 비선형 시스템에 대해 퍼지 $H_2/H_{\infty}$ 제어기 설계 사례를 보인다.

A Speed Sensorless Vector Control for Permanent Magnet Synchronous Motors based on an Adaptive Integral Binary Observer

  • Choi Yang-Kwang;Kim Young-Seok;Han Yoon-SeoK
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.70-77
    • /
    • 2005
  • This paper presents sensorless speed control of a cylindrical permanent magnet synchronous motor (PMSM) using the adaptive integral binary observer. In view of the composition with a main loop regulator and an auxiliary loop regulator, the normal binary observer has the feature of chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer, a new binary observer is formed by the addition of extra integral dynamics to the existing switching hyperplane equation. Also, because the parameters of the dynamic equations such as machine inertia or viscosity friction coefficient are not well known and these values can be changed during normal operations, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that the observer may overcome the problems caused by using dynamic equations. The rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to prove the effectiveness of the approach.

Quasi-LQG/$H_{infty}$/LTR Control for a Nonlinear Servo System with Coulomb Friction and Dead-zone

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.24-34
    • /
    • 2000
  • In this paper we propose a controller design method, called Quasi-LQG/$H_{\infty}$/LTR for nonlinear servo systems with hard nonlinearities such as Coulomb friction, dead-zone. Introducing the RIDF method to model Coulomb friction and dead-zone, the statistically linearized system is built. Then, we consider $H_{\infty}$ performance constraint for the optimization of statistically linearized systems, by replacing a covariance Lyapunov equation into a modified Riccati equation of which solution leads to an upper bound of the LQG performance. As a result, the nonlinear correction term is included in coupled Riccati equation, which is generally very difficult to thave a numerical solution. To solve this problem, we use the modified loop shaping technique and show some analytic proofs on LTR condition. Finally, the Quasi-LQG/$H_{\infty}$/LTR controller for a nonlinear system is synthesized by inverse random input describing function techniques (ITIDF). It is shown that the proposed design method has a better performance robustness to the hard nonlinearity than LQG/$H_{\infty}$/LTR method via simulations and experiments for the timing-belt driving servo system that contains the Coulomb friction and dead-zone.

  • PDF

적응모델추종제어기법에 의한 산업용 로봇 매니퓰레이터 제어기의 성능개선 및 시뮬레이션에 관한 연구 (A study on simulation and performance improvement of industrial robot manipulator controller using adaptive model following control method)

  • 허남수;한성현;이만형
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.463-477
    • /
    • 1991
  • This study proposed a new method to design a robot manipulator control system capable of tracking the trajectories of joint angles in a reasonable accuracy to cover with actual situation of varying payload, uncertain parameters, and time delay. The direct adaptive model following control method has been used to improve existing industrial robot manipulator control system design. The proposed robot manipulator controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories predefined by the designer. The manipulator control system studied has two loops: they are an inner loop on adaptive model following controller to compensate nonlinearity in the manipulator dynamic equation and to decouple the coupling terms and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstability approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in various cases, load variation, parameter uncertainties. and time delay. Since the proposed adaptive control method requires only a small number of parameters to be estimated, the controller has a relatively simple structure compared to the other adaptive manipulator controllers. Therefore, the method used is expected to be well suited for a high performance robot controller under practical operation environments.

입력 포화가 존재하는 다중 에이전트 시스템을 위한 PI기반의 봉쇄제어 (PI-based Containment Control for Multi-agent Systems with Input Saturations)

  • 임영훈;탁한호;강신출
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.102-107
    • /
    • 2021
  • 본 논문에서는 입력 포화가 존재하는 다중 에이전트 시스템의 봉쇄제어 문제를 다룬다. 봉쇄제어의 목표는 추종 에이전트들을 리더 에이전트들에 의해 형성된 convex hull 안으로 몰아넣음으로써 군집 행동을 얻는 것이다. 본 논문에서는 일정한 속도로 움직이는 리더 에이전트들을 고려한다. 움직이는 리더들을 고려한 봉쇄 문제를 해결하기 위하여 PI기반의 분산제어 알고리즘을 제안한다. 다음으로 추종 에이전트들의 목표 위치로의 수렴성을 해석한다. 구체적으로 포화 비선형성을 고려하기 위하여 적분 형태의 리아프노프 함수를 적용한다. 그리고 Lasalle's Invariance Principle을 기반으로 임의의 상수 이득들에 대하여 오차 상태들의 점근적 수렴성을 보인다. 마지막으로 고정된 리더들과 일정한 속도로 움직이는 리더들을 고려한 시뮬레이션을 진행하여 이론적 결과를 검증하였다.

특이섭동을 포함한 타카기 - 수게노 형태의 비선형 시스템을 위한 새로운 샘플치 제어기의 설계기법 제안 (Sampled-Data Controller Design for Nonlinear Systems Including Singular Perturbation in Takagi-Sugeno Form)

  • 문지현;이재준;이호재
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.50-55
    • /
    • 2016
  • 본 논문은 특이섭동을 포함한 비선형 시스템을 위한 샘플치 제어 기법을 논한다. 비선형 시스템은 타카기--수게노(Takagi--Sugeno: T--S) 퍼지모델 형태로 표현됨을 가정한다. 새로운 리아푸노프 함수와 추가적인 항등식을 이용하여 선형행렬부등식 형태의 샘플치 폐루프 T--S 퍼지시스템의 점근적 안정도 조건을 제시한다. 분석결과에 대한 몇 가지 논의점을 언급한다. 모의실험에 의하여 제안된 기법의 타당성을 보인다.

비선형 시스템 제어를 위한 동적 신경망의 최적화 (Optimization of Dynamic Neural Networks for Nonlinear System control)

  • 유동완;이진하;이영석;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.740-743
    • /
    • 1998
  • This paper presents an optimization algorithm for a stable Dynamic Neural Network (DNN) using genetic algorithm. Optimized DNN is applied to a problem of controlling nonlinear dynamical systems. DNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. The real time implementation is very important, and thus the neuro controller also needs to be designed such that it converges with a relatively small number of training cycles. SDNN has considerably fewer weights than DNN. The object of proposed algorithm is to the number of self dynamic neuron node and the gradient of activation functions are simultaneously optimized by genetic algorithms. To guarantee convergence, an analytic method based on the Lyapunov function is used to find a stable learning for the SDNN. The ability and effectiveness of identifying and controlling, a nonlinear dynamic system using the proposed optimized SDNN considering stability' is demonstrated by case studies.

  • PDF