• 제목/요약/키워드: control system design

검색결과 12,537건 처리시간 0.043초

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권2호
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

유전 알고리즘을 이용한 모델 추종형 최적 보일러-터빈 H$\infty$ 제어시스템의 설계 (A design on model following optimal boiler-turbine H$\infty$control system using genetic algorithm)

  • 황현준;김동완;박준호;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1460-1463
    • /
    • 1997
  • The aim of this paper is to suggest a design method of the model following optimal boiler-turbine H.inf. control system using genetic algorithm. This boiler-turbine H.inf. control system is designed by applying genetic algortihm with reference model to the optimal determination of weighting functions and design parameter .gamma. that are given by Glover-Doyle algornithm whch can design H.inf. contrlaaer in the sate. space. The first method to do this is ghat the gains of weightinf functions and .gamma. are optimized simultaneously by genetic algroithm. And the second method is that not only the gains and .gamma. but also the dynamics of weighting functions are optimized at the same time by genetic algonithm. The effectiveness of this boiler-turbine H.inf. control system is verified and compared with LQG/LTR control system by computer simulation.

  • PDF

차량 자세제어 시스템의 비례압력제어밸브 해석모델 개발 및 최적화 설계 (Optimization Design and Development of the Proportional Pressure Control Valve Analysis Model of Active Body Control)

  • 김동명;장주섭;손태관
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.127-134
    • /
    • 2014
  • Active body control system is an important system for determining the driving stability and ride comfort of the vehicle. Active body control system is composed of a cylinder unit power supply unit, and control valve unit. Control valve is a proportional pressure control valve, the dynamic characteristics of the valve affects the performance of the active body control system. We have developed an analytical model, we analyzed the design parameters of the proportional pressure control valve. Further, by knowing the design parameters effect on the system and to optimize the design parameters, and improved performance of the dynamic properties.

수중운동체를 위한 QLQG/LTR 심도 제어시스템 설계 (QLQG/LTR Depth Control System Design for Underwater Vehicles)

  • 김종식;한성익
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.118-127
    • /
    • 1993
  • A nonlinear control design method called the QJQG/LTR method is presented for the depth control of underwater vehicles with the deadzone of the flow control valve. And, it is shown how the design plant model can be formulated in the QLQG/LTR depth control system design for underwater vehicles which have the triple integrator. In order to show the effectiveness of this control system, the linear LQG/LTR control system neglected the deadzone effect and the nonlinear QLQG/LTR control system considered it are compared. It is found that the QLQG/LTR control system is relatively insensitive to the input magnitude, even if there exists a hard nonlinearity in the plant.

  • PDF

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

센서/엑츄에이터 배치를 고려한 구조-제어 통합최적설계 (Structure-Control Combined Optimal Design with S/A Collocation)

  • 박중현
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.69-74
    • /
    • 2004
  • A structure-control combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

  • PDF

INTEGRATED DEVELOPMENT ENVIRONMENT FROM MODELING TO IMPLEMENTATION FOR AUTOMOTIVE REAL-TIME EMBEDDED CONTROL SYSTEMS

  • Ma, J.;Youn, J.;Shin, M.;Hwang, I.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.345-351
    • /
    • 2006
  • Software-In-the-Loop Simulation(SILS) and Rapid Control Prototyping(RCP) are proposed as an integrated development environment to support the development process from system design to implementation. SILS is an environment used to simulate control systems with temporal behavior. RCP offers seamless phase shift from design to implementation based on automatic code generation. There are several toolsets that support control system design and analysis. A few of these tools generate the control software automatically. However, most of these design toolsets do not cover temporal behavior which appears after implementation. In earlier toolsets, the design and the implementation of a control system are considered as two separate processes which mean the conventional development process is not connected strictly. SILS/RCP environments work under an identical platform and use the same representation for system modeling. An integrated SILS/RCP environment makes it possible to design controllers under conditions similar to real execution during off-line simulation and to realize controllers in the early design phase. SILS/RCP environments integrate the design and implementation phases which reduce the time-to-market and provide greater performance-assured design. The establishment of SILS/RCP and the practical design approaches are presented.

선박운동제어를 위한 제어력분배 및 제어기설계에 관한 연구 (Control Allocation and Controller Design for Marine Vessel based on H Control Approach)

  • 지상원;김영복
    • 한국해양공학회지
    • /
    • 제26권3호
    • /
    • pp.20-25
    • /
    • 2012
  • In this paper, the authors propose a new approach to the control problem of marine vessels that are moored or controlled by actuators. The vessel control system is basically based on Dynamic Positioning System (DPS) technology. The main object of this paper is to obtain a more useful control design method for DPS. In this problem, the control allocation is a complication. For this problem, many results have been given and verified by other researchers using a two-step process, with the controller and control allocation design processes carried out individually. In this paper, the authors provide a more sophisticated design solution for this issue. The authors propose a new design method in which the controller design and control allocation problems are considered and solved simultaneously. In other words, the system stability, control performance, and allocation problem are unified by an LMI (linear matrix inequality) based on control theory. The usefulness of the proposed approach is verified by a simulation using a supply vessel model.

다목적 최적화를 이용한 비행제어계 설계 자동화 (Automated flight control system design using multi-objective optimization)

  • 류혁;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1296-1299
    • /
    • 1996
  • This paper proposes a design automation method for the flight control system of an aircraft based on optimization. The control system design problem which has many specifications is formulated as multi-objective optimization problem. The solution of this optimization problem should be considered in terms of Pareto-optimality. In this paper, we use an evolutionary algorithm providing numerous Pareto-optimal solutions. These solutions are given to a control system designer and the most suitable solution is selected. This method decreases tasks required to determine the control parameters satisfying all specifications. The design automation of a flight control system is illustrated through an example.

  • PDF

A Design of Remote and Wireless Control System using Bluetooth

  • Park Joon-Hoon;Kim Yong-Kwan
    • Journal of information and communication convergence engineering
    • /
    • 제4권1호
    • /
    • pp.13-17
    • /
    • 2006
  • In this paper a design and implementation method of remote control system for automobile is presented. For this, we used the Bluetooth technology for remote and wireless communications and microcontroller for system control. By using these techniques, we can design and implement automobile remote control system to improve data error rate, security and application.