• Title/Summary/Keyword: control genes

Search Result 1,991, Processing Time 0.031 seconds

Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of Gaeumannomyces graminis var. tritici Infecting Wheat

  • Xie, Li-hua;Quan, Xin;Zhang, Jie;Yang, Yan-yan;Sun, Run-hong;Xia, Ming-cong;Xue, Bao-guo;Wu, Chao;Han, Xiao-yun;Xue, Ya-nan;Yang, Li-rong
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. $TUB{\beta}$ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of $TUB{\beta}$ expression. The expression profile of ExoPG assessed using $TUB{\beta}$ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.

RNA-seq Profiles of Immune Related Genes in the Spleen of Necrotic Enteritis-afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeong Ho;Lillehoj, Hyun S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1496-1511
    • /
    • 2015
  • The study aimed to compare the necrotic enteritis (NE)-induced transcriptome differences between the spleens of Marek's disease resistant chicken line 6.3 and susceptible line 7.2 co-infected with Eimeria maxima/Clostridium perfringens using RNA-Seq. Total RNA from the spleens of two chicken lines were used to make libraries, generating 42,736,296 and 42,617,720 usable reads, which were assembled into groups of 29,897 and 29,833 mRNA genes, respectively. The transcriptome changes were investigated using the differentially expressed genes (DEGs) package, which indicated 3,255, 2,468 and 2,234 DEGs of line 6.3, line 7.2, and comparison between two lines, respectively (fold change ${\geq}2$, p<0.01). The transcription levels of 14 genes identified were further examined using qRT-PCR. The results of qRT-PCR were consistent with the RNA-seq data. All of the DEGs were analysed using gene ontology terms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the DEGs in each term were found to be more highly expressed in line 6.3 than in line 7.2. RNA-seq analysis indicated 139 immune related genes, 44 CD molecular genes and 150 cytokines genes which were differentially expressed among chicken lines 6.3 and 7.2 (fold change ${\geq}2$, p<0.01). Novel mRNA analysis indicated 15,518 novel genes, for which the expression was shown to be higher in line 6.3 than in line 7.2 including some immune-related targets. These findings will help to understand host-pathogen interaction in the spleen and elucidate the mechanism of host genetic control of NE, and provide basis for future studies that can lead to the development of marker-based selection of highly disease-resistant chickens.

Screening of Multiple Abiotic Stress-Induced Genes in Italian Ryegrass leaves

  • Lee, Sang-Hoon;Rahman, Md. Atikur;Kim, Kwan-Woo;Lee, Jin-Wook;Ji, Hee Chung;Choi, Gi Jun;Song, Yowook;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.190-195
    • /
    • 2018
  • Cold, salt and heat are the most critical factors that restrict full genetic potential, growth and development of crops globally. However, clarification of genes expression and regulation is a fundamental approach to understanding the adaptive response of plants under unfavorable environments. In this study, we applied an annealing control primer (ACP) based on the GeneFishing approach to identify differentially expressed genes (DEGs) in Italian ryegrass (cv. Kowinearly) leaves under cold, salt and heat stresses. Two-week-old seedlings were exposed to cold ($4^{\circ}C$), salt (NaCl 200 mM) and heat ($42^{\circ}C$) treatments for six hours. A total 8 differentially expressed genes were isolated from ryegrass leaves. These genes were sequenced then identified and validated using the National Center for Biotechnology Information (NCBI) database. We identified several promising genes encoding light harvesting chlorophyll a/b binding protein, alpha-glactosidase b, chromosome 3B, elongation factor 1-alpha, FLbaf106f03, Lolium multiflorum plastid, complete genome, translation initiation factor SUI1, and glyceraldehyde-3-phosphate dehydrogenase. These genes were potentially involved in photosynthesis, plant development, protein synthesis and abiotic stress tolerance in plants. However, this study provides new insight regarding molecular information about several genes in response to multiple abiotic stresses. Additionally, these genes may be useful for enhancement of abiotic stress tolerance in fodder crops as well a crop improvement under unfavorable environmental conditions.

Gene Microarray Assessment of Multiple Genes and Signal Pathways Involved in Androgen-dependent Prostate Cancer Becoming Androgen Independent

  • Liu, Jun-Bao;Dai, Chun-Mei;Su, Xiao-Yun;Cao, Lu;Qin, Rui;Kong, Qing-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9791-9795
    • /
    • 2014
  • To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-${\beta}$ signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.

Expression Profiling of Lipopolysaccharide Target Genes in RAW264.7 Cells by Oligonucleotide Microarray Analyses

  • Huang, Hao;Park, Cheol-Kyu;Ryu, Ji-Yoon;Chang, Eun-Ju;Lee, Young-Kyun;Kang, Sam-Sik;Kim, Hong-Hee
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.890-897
    • /
    • 2006
  • In inflammatory responses, induction of cytokines and other immune regulator genes in macrophages by pathogen-associated signal such as lipopolysaccharide (LPS) plays a crucial role. In this study, the gene expression profile changes by LPS treatment in the macrophage/monocyte lineage cell line RAW264.7 was investigated. A 60-mer oligonucleotide microarray of which probes target 32381 mouse genes was used. A reverse transcription-in vitro translation labeling protocol and a chemileuminescence detection system were employed. The mRNA expression levels in RAW264.7 cells treated for 6 h with LPS and the control vehicle were compared. 747 genes were up-regulated and 523 genes were down-regulated by more than 2 folds. 320 genes showing more than 4-fold change by LPS treatment were further classified for the biological process, molecular function, and signaling pathway. The biological process categories that showed high number of increased genes include the immunity and defense, the nucleic acid metabolism, the protein metabolism and modification, and the signal transduction process. The chemokine-cytokine signaling, interleukin signaling, Toll receptor signaling, and apoptosis signaling pathways involved high number of genes differentially expressed in response to LPS. These expression profile data provide more comprehensive information on LPS-target genes in RAW264.7 cells, which will be useful in comparing gene expression changes induced by extracts and compounds from anti-inflammatory medicinal herbs.

Genome Wide Expression Analysis of the Effect of Pinelliae Rhizoma Extract on Psychological Stress (반하(半夏)가 스트레스로 인한 생쥐의 뇌조직 유전자변화에 미치는 영향 연구)

  • Jeong, Jong-Hyo;Cho, Su-In;Song, Young-Gil;Kim, Ha-Na;Kim, Kyeong-Ok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.26 no.1
    • /
    • pp.63-78
    • /
    • 2015
  • Objectives: Pinelliae Rhizoma has traditionally been used as an anti-depressant in oriental medicine. This study is to investigate the effect of Pinelliae Rhizoma extract (PRe) on psychological stress in genome wild expression of mice. Methods: After giving physical stress to mice, PRe was orally administered with 100 mg/kg/day for five days. After extracting whole brain tissue from the mice, their genome changes were observed by micorarray analysis method. The genome changes were analyzed by IMAGENE 4.0, TREEVIEW, FatiGo algorithems, BOND database, cytoscape program, etc. Results: 1. PRe administered group were remained at normal level; 60% of increase was shown in expressed genes by physical stress, and 65% of decrease was shown in expressed genes by psychological stress. 2. Genes with increased expression in control group that remained at a normal state in PRe administered group were involved with the gene of a cellular metabolic process on biological process, protein binding on molecular function, and cell part on cell composition. The pathway was found to be cytokin-cytokin receptor interaction. 3. Genes with decreased expression in control group that remained at a normal state in PRe administered group were involved with the gene of a cellular metabolic process on biologiacl detail and coupled ATPaes activity on molecular function. This gene related path was Ubiquintin mediated proteolysis etc. 4. Core node genes analyzed by protein interaction network were Vinculin, Cell sdivision cycle 42 homolog (S. cerevisiae) etc. They played an important role in maintaining cytoskeleton and controlling cell cycle. Conclusions: Several genes were up-regulated and down-regulated in response to psychological stress. The expression of most of the genes that were altered in response to psychological stress was restored to normal levels in PRe treated mice. When the interaction network information was analyzed, the recovery of the core node genes in PRe treated mice indicates that this final set of genes may be the effective target of PRe.

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Sooyeon;Heo, Jubi;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.964-974
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

The Ribostamycin Biosynthetic Gene Cluster in Streptomyces ribosidificus: Comparison with Butirosin Biosynthesis

  • Subba, Bimala;Kharel, Madan Kumar;Lee, Hei Chan;Liou, Kwangkyoung;Kim, Byung-Gee;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.90-96
    • /
    • 2005
  • A cluster of genes for ribostamycin (Rbm) biosynthesis was isolated from Streptomyces ribosidificus ATCC 21294. Sequencing of 31.892 kb of the genomic DNA of S. ribosidificus revealed 26 open reading frames (ORFs) encoding putative Rbm biosynthetic genes as well as resistance and other genes. One of ten putative Rbm biosynthetic genes, rbmA, was expressed in S. lividans TK24, and shown to encode 2-deoxy-scyllo-inosose (DOI) synthase. Acetylation of various aminoglycoside-aminocyclitol (AmAcs) by RbmI confirmed it to be an aminoglycoside 3-N-acetyltransferase. Comparison of the genetic control of ribostamycin and butirosin biosynthesis pointed to a common biosynthetic route for these compounds, despite the considerable differences between them in genetic organization.

Identification of Differential Expressed Genes at 2-cell Stage Porcine Embryo using ACP-based DD-RT-PCR

  • Hwang, Kyu-Chan;Cui, Xiang-Shun;Lee, Hwa-Young;Jin, Yong-Xun;Kim, Jin-Hoi;Kim, Nam-Hyung
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.231-231
    • /
    • 2004
  • Successful embryonic development is dependant on temporal and stage-specific expression of appropriate genes. However, information on specific gene expression during early cleavage before zygotic gene activation (ZGA) is lacking. In the present study, we compared gene expression between porcine parthenotes 2-cell and blastocyst embryos to identify the genes that are specifically or prominently expressed by employing annealing control primers (ACP)-based Gene Fishing RCR. (omitted)

  • PDF

Enhancement of Growth Performance in Transgenic Rabbits with Overexpressing Growth Hormone Receptor and IGF-1 Receptor Genes

  • Chang, Suk-Min;Kim, Hyun-Ju;Kim, Jin-Young;Park, Wha-Sik;Im, Kyung-Soon;Dong IL Jin
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.95-95
    • /
    • 2002
  • Transgenic rabbits were produced by micoinjection of DNA containing metallothionein promoter ligated to growth hormone receptor (GHR) and IGF-l receptor (IGF-lR) genes. Founder transgenic rabbits transmitted transgenes into pups with Medelian ratio. The mRNA expression of transgenes using Northern blotting with probes of IGF-IR and GHR genes was checked in liver of transgenic rabbits. Transgenic rabbits with IGF-IR and GHR genes more expressed mRNA than control non-transgneic rabbits. (omitted)

  • PDF