• 제목/요약/키워드: control genes

검색결과 1,991건 처리시간 0.024초

벼도열병균 게놈서열로부터 ABC transporter 유전자군의 예측 및 특성 분석 (Prediction and Annotation of ABC Transporter Genes from Magnaporthe oryzae Genome Sequence)

  • 김용남;김진수;김수영;김정환;이종환;최우봉
    • 생명과학회지
    • /
    • 제20권2호
    • /
    • pp.176-182
    • /
    • 2010
  • 벼의 생산에 있어 가장 큰 문제 요인 중 하나인 벼도열병의 발생 원인균인 벼도열병균은 다양한 기작에 의해 방제 약제에 대한 내성을 가지는 것으로 알려져 있다. 막 운반단백질인 ABC transporter의 경우 환경으로부터의 다양한 독성 물질들을 배출하는 것으로 알려져 있다. 이미 알려진 벼도열병균의 게놈 서열로부터 생물정보학적 분석을 통하여 ABC transporter 단백질의 도메인 특성을 보이는 33개의 유전자군 서열을 예측하였다. 이중 3개의 경우는 이미 알려진 유전자로 판명되었다. Southern Hybridization 분석에 적용한 20개의 유전자들이 모두 게놈상에 단일 copy로 존재함을 확인하였다. 새로 예측된 30개의 유전자중 11개는 RT-PCR을 통하여 전사단계에서의 유전자 발현이 확인되었다.

Regulation of Gene Expression for Amino Acid Biosynthesis in the Yeast, Sacchromyces cerevisiae

  • Lea, Ho Zoo
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1995년도 한국생물과학협회 학술발표대회
    • /
    • pp.82-82
    • /
    • 1995
  • Regulation of enzyme synthesis by transcriptional and translational control systems provides rather stable adaptation to change of amino acid level in the growth medium, while manipulation of enzyme activity through endproduct feedback inhibition represents rather short-term and reversible ways of adjusting metabolic fluctuation of amino acid level. Various control mechanisms interplay to regulate genes encoding enzymes for amino acid biosynthesis in the yeast, Sacchromyces cerevisiae. When amino acids are in short supply, genes under a cross-pathway regulatory mechanism Or general amino acid control (general control) increase their action, in which Gcn4p is the major positive regulator of gene expression. When cells are cultured in minimal medium, basal level expression is also regulated by supplementary control elements, where inorganic phosphate level is additionally involved. Most of amino acid biosynthetic genes are also regulated by the level of endproduct of the pathway. This pathway-specific regulatory mechanism is called specific amino acid control (specific controD, under which gene expression is reduced when endproduct is present in the medium. Derepression of a gene through general control can be usually overridden by repression through specific control, where the endproduct level of that particular pathway is high and not limiting. In this presentation, regulatory factors for basal level expression and general control of yeast amino acid biosynthesis will be discussed, m addition to pathway-specific repression patterns and interaction between CrOSS- and specific-control mechanisms. Preliminary results are also presented from the investigation of the cloned genes in the threonine biosynthetic pathway of the yeast. yeast.

  • PDF

Use of In Vivo-Induced Antigen Technology to Identify In Vivo-Expressed Genes of Campylobacter jejuni During Human Infection

  • Hu, Yuanqing;Huang, Jinlin;Li, Qiuchun;Shang, Yuwei;Ren, Fangzhe;Jiao, Yang;Liu, Zhicheng;Pan, Zhiming;Jiao, Xin-An
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권3호
    • /
    • pp.363-370
    • /
    • 2014
  • Campylobacter jejuni is a prevalent foodborne pathogen worldwide. Human infection by C. jejuni primarily arises from contaminated poultry meats. Genes expressed in vivo may play an important role in the pathogenicity of C. jejuni. We applied an immunoscreening method, in vivo-induced antigen technology (IVIAT), to identify in vivo-induced genes during human infection by C. jejuni. An inducible expression library of genomic proteins was constructed from sequenced C. jejuni NCTC 11168 and was then screened using adsorbed, pooled human sera obtained from clinical patients. We successfully identified 24 unique genes expressed in vivo. These genes were implicated in metabolism, molecular biosynthesis, genetic information processing, transport, and other processes. We selected six genes with different functions to compare their expression levels in vivo and in vitro using real-time RT-PCR. The results showed that the selected six genes were significantly upregulated in vivo but not in vitro. In short, these identified in vivo-induced genes may contribute to human infection of C. jejuni, some of which may be meaningful vaccine candidate antigens or diagnosis serologic markers for campylobacteriosis. IVIAT may present a significant and efficient method for understanding the pathogenicity mechanism of Campylobacter and for finding targets for its prevention and control.

누에에서 곰팡이(Aspergillus niger) 감염에 의해 유도 발현되는 유전자의 클로닝과 동정 (Cloning and Identification of Differentially Expressed Genes Induced by Fungal Infection from Silkworm, Bombyx mori)

  • 이진성;홍수영;이기화
    • 생명과학회지
    • /
    • 제20권6호
    • /
    • pp.929-933
    • /
    • 2010
  • 본 연구는 곤충으로부터 새로운 항 진균 단백질을 발굴하기 하기 위한 목적으로 누에를 대상으로 Aspergillus niger의 감염을 유도하였을 때 발현되는 유전자의 특성을 분석한 것이다. Annealing control primer 법에 기초한 GeneFishing Kit를 사용하여 A. niger를 약 $6{\times}10^8$ colony per unit로 5령기 누에 유충의 체강에 감염시킨 후, 6시간 경과한 다음에 유도 발현되는 유전자(differentially expressed genes, DEGs)를 분석 한 결과, 10개의 유도 발현되는 유전자를 분리하였고 RT-PCR을 통해서 lysozyme, enbocin 그리고 한 개의 기능이 알려지지 않는 유전자등 3개의 유전자가 A. niger의 감염에 의해서 유의하게 과 발현된다는 것을 검증하였다. 일반적으로 그람 음성 및 양성 세균의 감염에 의해 유도된다고 알려진 enbocin 유전자가 A. niger의 감염에서도 과 발현이 유도되는 본 연구의 결과는 앞으로 enbocin 유전자의 항 진균 활성 연구에 중요한 기초 자료로 활용될 수 있을 것이다.

고추 탄저병균의 포자 발아 단계 발현 유전자 동정 (Identification of Genes Expressed during Conidial Germination of the Pepper Anthracnose Pathogen, Colletotrichum acutatum)

  • 김정환;이종환;최우봉
    • 생명과학회지
    • /
    • 제23권1호
    • /
    • pp.8-14
    • /
    • 2013
  • 고추 탄저병균의 포자 발아 단계에서 발현되는 유전자를 파악하기 위해 포자 발아단계cDNA library를 제작하고, 임의로 선택된 cDNA clone들에 대한 EST sequencing을 실시하였다. 총 983개 EST를 확보하여 contig assembly를 실시한 결과, 197개 contigs와 267개 singletons으로 조합되어, 최종적으로 464개의 유전자를 동정하였다. 464개 유전자 서열에서 유추한 아미노산 서열을 이용한 상동유전자 검색을 통해 절반의 유전자가 GenBank에 기존 등록된 유전자와 유의성 있는 유사성을 보였다. 가장 높은 빈도로 발현된 유전자는 elongation factor, histone protein, ATP synthease, 14-3-3 protein, clock controlled protein을 암호화하는 유전자들이었다. 그리고 고추 탄저병균의 세포 발달과정에 관여 하는것으로 추정되는 GTP-binding protein, MAP kinase, transaldolase, ABC transporter 유전자들도 검출되었다. 또한 고추탄저병균의 병원성에 영향을 미치는 것으로 파악되는 ATP citrate lyase, CAP20, manganese-superoxide dismutase 유전자들도 검출되어, EST sequencing 을 통한 세포 발달 단계 발현 유전자 탐색이 효과적임을 알 수 있었다.

Finding associations between genes by time-series microarray sequential patterns analysis

  • Nam, Ho-Jung;Lee, Do-Heon
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.161-164
    • /
    • 2005
  • Data mining techniques can be applied to identify patterns of interest in the gene expression data. One goal in mining gene expression data is to determine how the expression of any particular gene might affect the expression of other genes. To find relationships between different genes, association rules have been applied to gene expression data set [1]. A notable limitation of association rule mining method is that only the association in a single profile experiment can be detected. It cannot be used to find rules across different condition profiles or different time point profile experiments. However, with the appearance of time-series microarray data, it became possible to analyze the temporal relationship between genes. In this paper, we analyze the time-series microarray gene expression data to extract the sequential patterns which are similar to the association rules between genes among different time points in the yeast cell cycle. The sequential patterns found in our work can catch the associations between different genes which express or repress at diverse time points. We have applied sequential pattern mining method to time-series microarray gene expression data and discovered a number of sequential patterns from two groups of genes (test, control) and more sequential patterns have been discovered from test group (same CO term group) than from the control group (different GO term group). This result can be a support for the potential of sequential patterns which is capable of catching the biologically meaningful association between genes.

  • PDF

Transcriptome profiling of the coffee (C. arabica L.) seedlings under salt stress condition

  • Haile, Mesfin;Kang, Won Hee
    • Journal of Plant Biotechnology
    • /
    • 제45권1호
    • /
    • pp.45-54
    • /
    • 2018
  • This research was conducted to study the gene expression of coffee (Coffea arabica L.) seedlings under salt stress condition. A solution of five percent ($2.3dS\;m^{-1}$) deep sea water was used for the salt treatment, and it was thereby compared to normal irrigation water ($0.2dS\;m^{-1}$) used for the control treatment. The mRNA was extracted from the leaves of the coffee seedlings for a comprehensive analysis. In this study, a total of 19,581 genes were identified and aligned to the reference sequences available in the coffee genome database. The gene ontology analysis was performed to estimate the number of genes associated with the identified biological processes, cellular components and molecular functions. Among the 19,581 genes, 7369 (37.64%) were associated with biological processes, 5909 (30.18%) with cellular components, and 5325 (27.19%) with molecular functions. The remaining 978 (4.99%) genes were therefore grouped as unclassified. A differential gene expression analysis was performed using the DESeq2 package to identify the genes that were differentially expressed between the treatments based on fold changes and p-values. Namely, a total of 611 differentially expressed genes were identified (treatment/control) in that case. Among these, 336 genes were up-regulated while 275 of the genes were down-regulated. Of the differentially expressed genes, 60 genes showed statistically significant (p < 0.05) expression, 44 of which were up-regulated and 16 which were down-regulated. We also identified 11 differentially expressed transcription factor genes, 6 of which were up-regulated and rest 5 genes were down-regulated. The data generated from this study will help in the continued interest and understanding of the responses of coffee seedlings genes associated with salinity stress, in particular. This study will also provide important resources for further functional genomics studies.

Endoplasmic Reticulum (ER) Stress Inhibitor or Antioxidant Treatments during Micromanipulation Can Inhibit Both ER and Oxidative Stresses in Porcine SCNT Embryos

  • Park, Hye-Bin;Park, Yeo-Reum;Kim, Mi-Jeong;Jung, Bae-Dong;Park, Choon-Keun;Cheong, Hee-Tae
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권1호
    • /
    • pp.31-41
    • /
    • 2020
  • We investigated the effects of endoplasmic reticulum (ER) stress inhibitor and antioxidant treatments during the micromanipulation of somatic cell nuclear transfer (SCNT) on in vitro development of SCNT embryos. Tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor and vitamin C (Vit. C), an antioxidant, were treated by alone or in combination, then, the level of X-box binding protein 1 (Xbp1) splicing and the expressions of ER stress-associated genes, oxidative stress-related genes, and apoptotic genes were confirmed in the 1-cell and blastocyst stages. In the 1-cell stage, the levels of Xbp1 splicing were significantly decreased in TUDCA and Vit. C treatment groups compared to the control (p<0.05). In addition, the expression levels of most ER stress-associated genes and oxidative stress-related genes were significantly lower in all treatment groups than the control (p<0.05), and the transcript levels of apoptotic genes were also significantly lower in all treatment groups than the control (p<0.05). In the blastocyst stage, decreased expression of ER stress-, oxidative stress-, and apoptosis-related genes were observed only in some treatments. However, the blastocyst formation rates in TUDCA and Vit. C treatment groups (24.8% and 22.0%, respectively) and mean blastocyst cell number in all treatment groups (59.7±4.3 to 63.5±3.3) were significantly higher (p<0.05) than those of control. The results showed that the TUDCA or Vit. C treatment during micromanipulation inhibited both ER and oxidative stresses in the early stage of SCNT embryos, thereby reducing cell damage and promoting in vitro development.

Restoration of the inflammatory gene expression by horse oil in DNCB-treated mice skin

  • Lee, Jae-Chul;Park, Ga-Ryoung;Choi, Byoung-Soo;Lee, Youngjae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • 제21권1호
    • /
    • pp.15.1-15.11
    • /
    • 2020
  • The present study evaluated the anti-inflammatory effect of horse oil in 2, 4-dinitrochlorobenzene (DNCB)-treated BALB/c mice. After the application of DNCB, the mice showed atopic dermatitis symptoms, including severe erythema, hemorrhage, and erosion, whereas those symptoms were alleviated by treatment with horse oil. To explain the anti-dermatitis effect of horse oil, the gene expression levels in the healing process in dorsal skin were observed using a cDNA microarray. The cDNA microarray analysis revealed that the expression levels of 30 genes related to the inflammation, including Ccr1, Ccr2, Ccl20, Anxa1, and Hc genes, were up-regulated (higher than 2.0-fold) in the DNCB group compared to the levels in the control group, whereas the levels were restored to the control level in the DNCB + horse oil-treated group. In contrast, the gene expression levels of 28 genes related to inflammation, including chemokine genes Ccl5, Ccl7, Ccl8, Cxcl10, and Cxcl13 genes, were down-regulated (lower than 0.5-fold) in the DNCB group compared to the levels in the control group, whereas the levels were restored to the control level in the DNCB + horse oil-treated group. Overall, the results show that horse oil restores the expression levels of genes related to inflammation that were perturbed by DNCB treatment.

Identification of Differentially Expressed Genes by Proto-oncogene Protein DEK using Annealing Control Primers

  • Kim, Dong-Wook;Lee, Jae-Hwi;Seo, Sang-Beom
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.184-189
    • /
    • 2008
  • The proto-oncogene protein DEK has been implicated in various human disease including cancer. We have shown that DEK induces caspase-dependent apoptosis in Drosophila by regulating histone acetylation. Reverse transcription-polymerase chain reaction (RT-PCR) method based on annealing control primers was used to screen and identify differentially expressed genes (DEGs) in DEK overexpressed HeLa cells. Among the genes identified, clusterin and fibrillarin have major role in apoptosis pathway regulation. TFIIIC and RPS24 are implicated in HAT mediated transcriptional initiation and cololectal cancer, respectively. To further analyze DEK's role in apoptosis, multiplex PCR was performed. Caspase-3, -7, and -10 and proapoptotic gene bid were newly identified as possible target genes regulated by DEK expression.