• 제목/요약/키워드: control arm

검색결과 1,237건 처리시간 0.03초

상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한 (Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint)

  • 김현철;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

7자유도 탁상식 마스터 암의 설계 연구 (Study of 7 Degree of Freedom Desktop Master Arm)

  • 최형식;이동준;하경남
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.59-65
    • /
    • 2012
  • In this research, a novel mater arm was studied as a teaching device for an underwater revolute robot arm used as a slave arm. The master arm was designed to be a seven-degree-of-freedom (DOF) structure, with a structure similar to that of the slave arm, and to be desktop size to allow it to be worn on a human arm. The master arm with encoders on the joints was used as an input device for teaching a slave robot arm. In addition, small electric magnets were installed at the joints of the master arm to generate the haptic force. A control system was designed to sense excessive force and torque in the joints of the master arm and protect it by controlling the position and velocity of the slave arm through the encoder signal of the master arm.

Stabilization and trajectory control of the flexible manipulator with time-varying arm length

  • Park, Chang-Yong;Ono, Toshiro;Sung, Yulwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.20-23
    • /
    • 1996
  • This paper deals with the flexible manipulator with rotational and translational degrees of freedom, which has an arm of time-varying length with the prismatic joint. The tracking control problem of the flexible manipulator is considered. First we design the controller of the 2-type robust servo system based on the finite horizon optimal control theory for the trajectory planned as a discontinuous velocity. Next, to reduce the tracking error, we use the method of the dynamic programming and of modifying the reference trajectory in time coordinate. The simulation results show that the dynamic modeling is adequate and that the asymptotic stabilization of the flexible manipulator is preserved in spite of nonlinear terms. The PTP control error has been reduced to zero completely, and the trajectory tracking errors are reduced sufficiently by the proposed control method.

  • PDF

A Realization Method of Fault-tolerant Control of Flexible Arm under Sensor Fault by Using an Adaptive Sensor Signal Observer

  • Izumikawa Yu;Yubai Kazuhiro;Hirai Junji
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.8-17
    • /
    • 2006
  • In this paper, we propose a fault-tolerant control system for the position control and vibration suppression of a flexible arm robot. The proposed control system has a strain gauge sensor signal observer based on a reaction force observer and detects a fault by monitoring an estimated error. In order to improve the estimation accuracy, the plant parameters included in the sensor signal observer are updated by using the strain gauge sensor signal in normal time through the adaptive law. After fault detection, the proposed control system exchanges the faulty sensor signal for the estimated one and switches to a fault mode controller so as to maintain the stability and the control performance. We confirmed the effectiveness of the proposed control system through several experiments.

Design of Input/Output Interface for ARM/AMBA based Board Using VHDL

  • Ryoo, Dong-Wan;Lee, Jeon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.131.1-131
    • /
    • 2001
  • At the present time, multimedia chip, internet application, and network equipment is designed by using ARM core. Because it has a good debugging, software compiler and needed low power. We must process a data coding to send a multimedia data by real time. So need to connect software and hardware algorithm. In this research, We design interface for ARM9/AMBA based board using VHDL for these function implementation. The board is used the ARM company´s ARM940T for software function implementation and Xilinx company´s Virtex E2000 for hardware function algorithm. The various hardware algorithm (ME,ME,DCT) block for performance can be implemented on this system.

  • PDF

자동차 로우어 암의 내구성 및 응력 해석 (Durability and Stress Analysis On Automotive Lower Arm)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.376-380
    • /
    • 2010
  • The capability of automotive suspension system depends on steering safety of knuckle and lower control arm. In this study, light weight is applied with lower arm by the material of aluminium alloy. Distributed stress, fatigue life and proper vibration are analyzed with multiple loads happened by automobile. The durability of lower arm can be verified by the result of structural analysis.

양팔 로보트의 제어에 관한 연구 (A study on Control of a Dual-arm Robot)

  • 김종현;김종삼;박만식;이석규;배진호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.817-821
    • /
    • 1991
  • Coordinated motion control of two arms of a dual-arm robot has been studied by many researchers, because of it's potential application in assembly as well as the handling of large and heavy objects beyond the capacity of single arm. This paper derives dynamic equation of a dual-arm robot, and describes some constrains to pick up a simply shaped object at prespecified position on it. This paper concludes with describing both PD and self-tunning control algorithm for the above task.

  • PDF

유연한 로보트 팔의 동적 모델링과 시뮬레이션 (Dynamic modeling and simulation of flexible robotic arms)

  • 김형옥;박세승;이정기;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.248-253
    • /
    • 1992
  • In the development of a high speed and light weight manipulator, it is necessary to consider the structural elasticity of a robotic arm. The analysis of the infinite mode dynamic of robotic arm must be performed to obtain the finite mode modelling to achieve the feasible controller design of the robotic arm. The modelling procedure of the robotic arm is also illustrated. The controlled mode of the modelled dynamic can be derived by truncating the higher vibrational mode to result in the low order system for the sampling in the control signal is confined to the higher mode. And it is controlled by the pole assignment which can compensate the unmodelled dynamic effects. The unmodelled dynamic can result in the instability of the controlled system, which is known as spillover. The controller design of the low order system is simulated by the pole assignment and optimal control theory.

  • PDF

슬라이딩 섹터 제어를 이용한 유연한 로봇 팔에 대한 제어기 설계 (Design on the Controller of Flexible Robot using Sliding Sector Control)

  • 한종길;배성환;양근호
    • 한국전자통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.541-546
    • /
    • 2010
  • 유연한 로봇팔은 모터에 의해 관절 축을 회전할 때 진동이 발생한다. 유연한 팔이 원하는 각으로 회전하면서 동시에 팔 끝의 진동이 안정화되도록 제어하였다. 본 논문에서 유연한 로봇팔의 동력학은 bernoulli-Euler의 beam이론과 라그란지 방정식을 이용하여 구하였고, 섹터 내부에 연속입력함수를 가진 슬라이딩 섹터이론을 이용하여 히스테리시스 사구간을 가진 비선형 제어기를 제안한다.

ARM9 Platform을 이용한 Embedded Linux 기반의 UPnP Device의 구현 (Implementation of UPnP Device based on Embedded Linux using ARM9 Platform)

  • 이희정;정진규;진선일;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.754-757
    • /
    • 2003
  • The implementation of home network systems In ubiquitous computing environments requires middleware that provides a method to control and operate home appliance devices. The Universal Plug and Play (UPnP), which is based on the IPv4 protocol and running on a PC, consists of UPnP devices that provide relevant services and control points that control the devices. However, It is inappropriate to Implement UPnP devices on a PC, since the implementation on a PC requires much space and electrical power. In this paper, a small embedded home network device equipped with UPnP middleware is implemented on an embedded GNU/Linux system running on an ARM9 platform, in order to deal with such problems.

  • PDF