• Title/Summary/Keyword: contrast-to-noise ratio

Search Result 296, Processing Time 0.03 seconds

A Study on Dose Reduction Method according to Slice Thickness Change using Automatic Exposure Controller and Manual Exposure in Intervention (인터벤션에서 자동노출제어장치와 수동노출 사용 시 두께 변화에 따른 선량감소 방안 연구)

  • Hwang, Jun-Ho;Jung, Ku-Min;Choi, Ji-An;Kim, Hyun-Soo;Lee, Kyung-Bae
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • We aims to perform comparative analysis on the dose area and image qualities varying on the slice thickness when using Automatic Exposure Controller (AEC) and manual exposure; thus, it wants to suggest a measure to reduce exposure dose by setting the optimal examination condition for each slice thickness. The method was to set the thickness as Thin, Normal, and Heavy adult and evaluate the dose area, spatial resolution, low contrast resolution, Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) according to each slice thickness by using the AEC and the manual exposure controller. The dose area according to each slice thickness all increased both when using the AEC and the manual exposure. However, the manual exposure showed lower dose area product than the AEC. Spatial resolutions and low contrast resolutions were all observed to be higher than the evaluation standard. Also, the SNR and CNR of each thickness all increased when using the AEC. When using the manual exposure, SNR and CNR increased in all cases other than the Heavy Adult. Consequently, the Thin and Normal Adult showed dose reduction about 2 times when using the manual exposure controller, while ensuring the image quality. Heavy adult was able to maintain good image quality by using AEC.

Analysis of the Relationships according to the Frame (f/s) Change of Cine Imaging in Coronary Angiographic System: With Focus on FOV Enlargement and Live Zoom (심장 혈관 조영장치에서의 프레임 레이트(f/s) 변화에 따른 상관 관계 분석 : FOV 확대와 Live Zoom을 중점으로)

  • Kim, Won Hyo;Song, Jong-Nam;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.845-852
    • /
    • 2018
  • This study aimed to investigate the difference of X-ray exposure by comparing and analyzing absorbed dose according to changes in the number of frames in coronary angiography, also depending whether the zoom mode is FOV enlargement or Zoom Live. Moreover, for appropriate frame selection measures for examination, including the effect of frame change on the image quality, were sought by measuring the noise strength expressed by the standard deviation (SD), the signal to noise ratio (SNR) and contrast to noise ratio (CNR). The study was conducted with an anthropomorphic phantom on an angio-system. The linear relationship between the frame rate and the radiation dose was evident. On the contrary, the indices of image quality (SD, SNR, and CNR) were almost constant irrespective of the number of frames. The difference depending on the zoom mode was not statistically significant for DAP, air kerma, and SD (p > 0.05). However, SNR and CNR were statistically different between FOV enlargement and Zoom Live. In conclusion, since the image quality was not degraded significantly with the decreasing frame rate from 30, 15, to 7.5 f/s and the radiation dose evidently decreases in almost exactly linear proportion to the decreasing frame rate, the number of frames per second needs to be maintained as low as reasonably achievable. As for the dependence on the zooming mode, the Live Zoom mode showed statistically significant improvement in the image quality indices of SNR and CNR and it justifies active use of the Live Zoom mode which enables real-time image enlargment without additional radiation dose.

Dose Reduction Method for Chest CT using a Combination of Examination Condition Control and Iterative Reconstruction (검사 조건 제어와 반복 재구성의 조합을 이용한 흉부 CT의 선량 저감화 방안)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1025-1031
    • /
    • 2023
  • We aimed to evaluate the radiation dose and image quality by changing the Scout view voltage in low-dose chest CT (LDCT) and applying scan parameters such as AEC (auto exposure control) and ASIR (adaptive statistical iterative reconstruction) to find the optimal protocol. Scout view voltage was varied at 80, 100, 120, 140 kV and after measuring the dose 5 times using the existing low-dose chest CT protocol, the appropriate kV was selected for the study using the Dose report provided by the equipment. After taking a basic LDCT shot at 120 kV, 30 mAs, ASIR 50% was applied to this condition. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed by measuring Background noise (B/N). For dose comparison, CTDIvol and DLP provided by the equipment were compared and analyzed using the formulas. The results indicated that the protocol of scout 140 + LDCT + ASIR 50 + AEC reduced radiation exposure and improved image quality compared to traditional LDCT, providing an optimal protocol. As demonstrated in the experiment, LDCT screenings for asymptomatic normal individuals are crucial, as they involve concerns over excessive radiation exposure per examination. Therefore, applying appropriate parameters is important, and it is expected to contribute positively to the public health in future LDCT based health screenings.

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.439-443
    • /
    • 2019
  • To improve the noise characteristics, software-based noise reduction algorithms are widely used in cadmium zinc telluride (CZT) pixelated semiconductor gamma camera system. The purpose of this study was to develop an improved median filtering algorithm using a thresholding method for noise reduction in a CZT pixelated semiconductor gamma camera system. The gamma camera system simulated is a CZT pixelated semiconductor detector with a pixel-matched parallel-hole collimator and the spatial resolution phatnom was designed with the Geant4 Application for Tomography Emission (GATE). In addition, a noise reduction algorithm with a median filter using an improved thresholding method is developed and we applied our proposed algorithm to an acquired spatial resolution phantom image. According to the results, the proposed median filter improved the noise characteristics compared to a conventional median filter. In particular, the average for normalized noise power spectrum, contrast to noise ratio, and coefficient of variation results using the proposed median filter were 10, 1.11, and 1.19 times better than results using conventional median filter, respectively. In conclusion, our results show that the proposed median filter using improved the thresholding method results in high imaging performance when applied in a CZT semiconductor gamma camera system.

Efficiency of Median Modified Wiener Filter Algorithm for Noise Reduction in PET/MR Images: A Phantom Study (PET/MR 영상에서의 팬텀을 활용한 노이즈 감소를 위한 변형된 중간값 위너필터의 적용 효율성 연구)

  • Cho, Young Hyun;Lee, Se Jeong;Lee, Youngjin;Park, Chan Rok
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.225-229
    • /
    • 2021
  • The digital image such as medical X-ray and nuclear medicine field mainly contains noise distribution. The noise degree in image degrades image quality. That is why, the noise reduction algorithm is efficient for medical image field. In this study, we confirmed effectiveness of application for median modified Wiener filter (MMWF) algorithm for noise reduction in PET/MR image compared with median filter image, which is used as conventional noise redcution algorithm. The Jaszczak PET phantom was used by using 18F solution and filled with NaCl+NiSO4 fluids. In addition, the radioactivity ratio between background and six spheres in the phantom is maintained to 1:8. In order to mimic noise distribution in the image, we applied Gaussian noise using MATLAB software. To evlauate image quality, the contrast to noise ratio (CNR) and coefficient of variation (COV) were used. According to the results, compared with noise image and images with MMWF algorithm, the image with MMWF algorithm is increased approximately 33.2% for CNR result, decreased approximately 79.3% for COV result. In conclusion, we proved usefulness of MMWF algorithm in the PET/MR images.

Optimum Superimposed Training for Mobile OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • Superimposed training (SIT) design for estimating of time-varying multipath channels is investigated for mobile orthogonal frequency division multiplexing (OFDM) systems. The design of optimum SIT consists of two parts: The optimal SIT sequence is derived by minimizing the channel estimates' mean square error (MSE); the optimal power allocation between training and information data is developed by maximizing the averaged signal to interference plus noise ratio (SINR) under the condition of equal powered paths. The theoretical analysis is verified by simulations. For the metric of the averaged SINR against signal to noise ratio (SNR), the theoretical result matches the simulation result perfectly. In contrast to an interpolated frequency-multiplexing training (FMT) scheme or an SIT scheme with random pilot sequence, the SIT scheme with proposed optimal sequence achieves higher SINR. The analytical solution of the optimal power allocation is demonstrated by the simulation as well.

Analysis of DIC Platform and Image Quality with FHD for Displacement Measurement (FHD급 DIC 플랫폼의 변위계측용 영상품질 분석)

  • Park, Jongbae;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.105-111
    • /
    • 2018
  • This paper presents the analysis of image quality with FHD(Full HD) resolution camera equipped DIC(Digital Image Correlation) platform for the measurement of the architectural structure's relative displacement. DIC platform was designed based on i.MX6 of Freescale. Displacement measurement based on DIC method, the error is affected by image quality factors as pixel number, brightness, contrast, and SNR[dB](Signal to Noise Ratio). The effect were analyzed. The displacement of ROI(Region Of Interest) area within the image was measured by sub-pixel units based on DIC method. The non-contact telemetry property of DIC method, it can be used to long distance non-contact measurement. The various displacement results was measured and analyzed with the image quality factor adjustment according to the distance(25m, 35m, 50m).

The Effects of Image Dehazing Methods Using Dehazing Contrast-Enhancement Filters on Image Compression

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Li, Weizhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3245-3271
    • /
    • 2016
  • To obtain well-dehazed images at the receiver while sustaining low bit rates in the transmission pipeline, this paper investigates the effects of image dehazing methods using dehazing contrast-enhancement filters on image compression for surveillance systems. At first, this paper proposes a novel image dehazing method by using a new method of calculating the transmission function—namely, the direct denoising method. Next, we deduce the dehazing effects of the direct denoising method and image dehazing method based on dark channel prior (DCP) on image compression in terms of ringing artifacts and blocking artifacts. It can be concluded that the direct denoising method performs better than the DCP method for decompressed (reconstructed) images. We also improve the direct denoising method to obtain more desirable dehazed images with higher contrast, using the saliency map as the guidance image to modify the transmission function. Finally, we adjust the parameters of dehazing contrast-enhancement filters to obtain a corresponding composite peak signal-to-noise ratio (CPSNR) and blind image quality assessment (BIQA) of the decompressed images. Experimental results show that different filters have different effects on image compression. Moreover, our proposed dehazing method can strike a balance between image dehazing and image compression.

Noise Reduction for Dual-energy X-ray Absorptiometry Image using Sparse Representation (Sparse 표현을 이용한 이중 에너지 X 선 흡수 영상 잡음 제거)

  • Kim, Hyungil;Eom, Wonyong;Kim, Dae Hoe;Ro, Yong Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.369-372
    • /
    • 2012
  • 대사성 골 질환인 골다공증(Osteoporosis)의 조기 진단을 위한 골 밀도를 측정하는 방법이 최근 연구되고 있다. 골 밀도 영상은 이중 에너지 X 선 흡수법에 의해 측정되는데, 영상에 존재하는 잡음은 뼈 영역 추출과 골 밀도 계산에 어려움을 주고 있다. 따라서 본 논문에서는 최근 신호처리 분야에서 폭넓게 사용되고 있는 sparse 표현을 도입하여 X 선 영상의 잡음을 제거하는 방법을 제안한다. 실험을 통해 제안한 잡음 제거 방법의 결과가 기존의 방법에 비해 개선됨을 MSR(Mean to Standard deviation Ratio)과 CNR(Contrast to Noise Ratio)을 통해 확인하였다.