• Title/Summary/Keyword: contour image

Search Result 655, Processing Time 0.023 seconds

Rectification of Document Image on Smartphone Using MSER-b Binarization (MSER-b 이진화 기법을 이용한 스마트폰 문서 이미지 보정 기법)

  • Yu, Young-Jung;Moon, Sang-Ho;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.201-207
    • /
    • 2015
  • The smartphone with camera can easily generate an image instead of a scanner. However the document image through a smartphone can have distortions related rotation or perspective. In this paper, we proposed a method to generate the document image in that distortions are reduced from the captured document image through a smartphone. For this, the original document image through a smartphone is preprocessed using the MSER-b technique to reduce the light effect. Then, the text area contour is extracted using the characteristics of the document image. Lastly, rotation or perspective distortions are reduced using the extracted text area contour. For experiments, the proposed method is compared two other products. Through experiments, we show that the distortions within the captured document image through smartphone can be effectively reduced.

Lip Contour Detection by Multi-Threshold (다중 문턱치를 이용한 입술 윤곽 검출 방법)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.431-438
    • /
    • 2020
  • In this paper, the method to extract lip contour by multiple threshold is proposed. Spyridonos et. el. proposed a method to extract lip contour. First step is get Q image from transform of RGB into YIQ. Second step is to find lip corner points by change point detection and split Q image into upper and lower part by corner points. The candidate lip contour can be obtained by apply threshold to Q image. From the candidate contour, feature variance is calculated and the contour with maximum variance is adopted as final contour. The feature variance 'D' is based on the absolute difference near the contour points. The conventional method has 3 problems. The first one is related to lip corner point. Calculation of variance depends on much skin pixels and therefore the accuracy decreases and have effect on the split for Q image. Second, there is no analysis for color systems except YIQ. YIQ is a good however, other color systems such as HVS, CIELUV, YCrCb would be considered. Final problem is related to selection of optimal contour. In selection process, they used maximum of average feature variance for the pixels near the contour points. The maximum of variance causes reduction of extracted contour compared to ground contours. To solve the first problem, the proposed method excludes some of skin pixels and got 30% performance increase. For the second problem, HSV, CIELUV, YCrCb coordinate systems are tested and found there is no relation between the conventional method and dependency to color systems. For the final problem, maximum of total sum for the feature variance is adopted rather than the maximum of average feature variance and got 46% performance increase. By combine all the solutions, the proposed method gives 2 times in accuracy and stability than conventional method.

A Study on Rotational Alignment Algorithm for Improving Character Recognition (문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.79-84
    • /
    • 2019
  • Video image based technology is being used in various fields with continuous development. The demand for vision system technology that analyzes and discriminates image objects acquired through cameras is rapidly increasing. Image processing is one of the core technologies of vision systems, and is used for defect inspection in the semiconductor manufacturing field, object recognition inspection such as the number of tire surfaces and symbols. In addition, research into license plate recognition is ongoing, and it is necessary to recognize objects quickly and accurately. In this paper, propose a recognition model through the rotational alignment of objects after checking the angle value of the tilt of the object in the input video image for the recognition of inclined objects such as numbers or symbols marked on the surface. The proposed model can perform object recognition of the rotationally sorted image after extracting the object region and calculating the angle of the object based on the contour algorithm. The proposed model extracts the object region based on the contour algorithm, calculates the angle of the object, and then performs object recognition on the rotationally aligned image. In future research, it is necessary to study template matching through machine learning.

An Image Segmentation method using Morphology Reconstruction and Non-Linear Diffusion (모폴로지 재구성과 비선형 확산을 적용한 영상 분할 방법)

  • Kim, Chang-Geun;Lee, Guee-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.523-531
    • /
    • 2005
  • Existing methods for color image segmentation using diffusion can't preserve contour information, or noises with high gradients become more salient as the number of times of the diffusion increases, resulting in over-segmentation when applied to watershed. This paper proposes a method for color image segmentation by applying morphological operations together with nonlinear diffusion For an input image, transformed into LUV color space, closing by reconstruction and nonlinear diffusion are applied to obtain a simplified image which preserves contour information with noises removed. With gradients computed from this simplified image, watershed algorithm is applied. Experiments show that color images are segmented very effectively without over-segmentation.

Tongue Image Segmentation via Thresholding and Gray Projection

  • Liu, Weixia;Hu, Jinmei;Li, Zuoyong;Zhang, Zuchang;Ma, Zhongli;Zhang, Daoqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.945-961
    • /
    • 2019
  • Tongue diagnosis is one of the most important diagnostic methods in Traditional Chinese Medicine (TCM). Tongue image segmentation aims to extract the image object (i.e., tongue body), which plays a key role in the process of manufacturing an automated tongue diagnosis system. It is still challenging, because there exists the personal diversity in tongue appearances such as size, shape, and color. This paper proposes an innovative segmentation method that uses image thresholding, gray projection and active contour model (ACM). Specifically, an initial object region is first extracted by performing image thresholding in HSI (i.e., Hue Saturation Intensity) color space, and subsequent morphological operations. Then, a gray projection technique is used to determine the upper bound of the tongue body root for refining the initial object region. Finally, the contour of the refined object region is smoothed by ACM. Experimental results on a dataset composed of 100 color tongue images showed that the proposed method obtained more accurate segmentation results than other available state-of-the-art methods.

An Automatic Contour Detection of 2-D Echocardiograms Using the Heat Anisotropic Diffusion Method (Heat Anisotropic Diffusion 방법을 이용한 2차원 심초음파도에서 경계선 자동 검출)

  • 신동조;김동윤
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.79-90
    • /
    • 1996
  • In this paper, we present an automatic threshold decision method to detect the contour of the a 2-D echocarodiogram by using the Bayes estimator for the boundary-like region. The boundary-like region is constructed from the conduction coefficient of the heat anisotro-pic diffusion method which enforces the blurred image during the preprocessing step. For the boundary-like region, we used the Bayes estimator to select an optimal threshold level. From this threshold value, the contour of the echocardigrams can be detected automatically Finally by overlapping the estimated contour to the original echocardiogram, we can obtain the contour enforced ultrasound echocardiogram.

  • PDF

Object Contour Tracking Using Optimization of the Number of Snake Points in Stereoscopic Images (스테레오 동영상에서 스네이크 포인트 수의 최적화를 이용한 객체 윤곽 추적 알고리즘)

  • Kim Shin-Hyoung;Jang Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.239-244
    • /
    • 2006
  • In this paper, we present a snake-based scheme for contour tracking of objects in stereo image sequences. We address the problem by managing the insertion of new points and deletion of unnecessary points to better describe and track the object's boundary. In particular, our method uses more points in highly curved parts of the contour, and fewer points in less curved parts. The proposed algorithm can successfully define the contour of the object, and can track the contour in complex images. Furthermore, we tested our algorithm in the presence of partial object occlusion. Performance of the proposed algorithm has been verified by simulation.

3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator (초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할)

  • 정말남;곽종인;김상현;김남철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.

A Study on Application Method of Contour Image Learning to improve the Accuracy of CNN by Data (데이터별 딥러닝 학습 모델의 정확도 향상을 위한 외곽선 특징 적용방안 연구)

  • Kwon, Yong-Soo;Hwang, Seung-Yeon;Shin, Dong-Jin;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • CNN is a type of deep learning and is a neural network used to process images or image data. The filter traverses the image and extracts features of the image to distinguish the image. Deep learning has the characteristic that the more data, the better models can be made, and CNN uses a method of artificially increasing the amount of data by means of data augmentation such as rotation, zoom, shift, and flip to compensate for the weakness of less data. When learning CNN, we would like to check whether outline image learning is helpful in improving performance compared to conventional data augmentation techniques.

Genetic Algorithm based B-spline Fitting for Contour Extraction from a Sequence of Images (연속 영상에서의 경계추출을 위한 유전자 알고리즘 기반의 B-spline 적합)

  • Heo Hoon;Lee JeongHeon;Chae OkSam
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.357-365
    • /
    • 2005
  • We present a B-spline fitting method based on genetic algorithm for the extraction of object contours from the complex image sequence, where objects with similar shape and intensity are adjacent each other. The proposed algorithm solves common malfitting problem of the existing B-spline fitting methods including snakes. Classical snake algorithms have not been successful in such an image sequence due to the difficulty in initialization and existence of multiple extrema. We propose a B-spline fitting method using a genetic algorithm with a new initial population generation and fitting function, that are designed to take advantage of the contour of the previous slice. The test results show that the proposed method extracts contour of individual object successfully from the complex image sequence. We validate the algorithm by false-positive/negative errors and relative amounts of agreements.