• Title/Summary/Keyword: continuously reinforced concrete pavement (CRCP)

Search Result 23, Processing Time 0.027 seconds

Accuracy Improvement of Analysis Results Obtained from Numerical Analysis Model of Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 수치해석 모델의 해석결과 정확도 개선 방법)

  • Cho, Young Kyo;Seok, Jong Hwan;Choi, Lyn;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a two-dimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS : The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3-D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS : The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.

Construction Issues and Design Procedure for Transverse Steel in Continuously Reinforced Concrete Pavement (CRCP) (연속철근콘크리트 포장의 횡방향 철근 설계방법 및 시공관련 이슈 검토)

  • Choi, Pangil;Won, Moon Cheol
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • PURPOSES: The objective of this study is to evaluate construction issues and design for transverse steel in continuously reinforced concrete pavement(CRCP). METHODS : The first continuously reinforced concrete pavement(CRCP) design procedure appeared in the 1972 edition of the "AASHTO Interim Guide for Design of Pavement Structures", which was published in 1981 with Chapter 3 "Guide for the Design of Rigid Pavement" revised. A theory that was accepted at that time for the analysis of steel stress in concrete pavement, called subgrade drag theory(SGDT), was utilized for the design of reinforcement of CRCP - tie bar design and transverse steel design - in the aforementioned AASHTO Interim Guide. However SGDT has severe limitations due to simple assumptions made in the development of the theory. As a result, any design procedures for reinforcement utilizing SGDT may have intrinsic flaws and limitations. In this paper, CRCP design procedure for transverse steel was introduced and the limitations of assumptions for SGDT were evaluated based on various field testing. RESULTS: Various field tests were conducted to evaluate whether the assumptions of SGDT are reasonable or not. Test results show that 1) temperature variations exist along the concrete slab depth, 2) very little stress in transverse steel, and 3) warping and curling in concrete slab from the field test results. As a result, it is clearly revealed out that the assumptions of SGDT are not valid, and transverse steel and tie bar designs should be based on more reasonable theories. CONCLUSIONS : Since longitudinal joint is provided at 4.1-m spacing in Korea, as long as joint saw-cut is made in accordance with specification requirements, the probability of full-depth longitudinal cracking is extremely small. Hence, for transverse steel, the design should be based on the premise that its function is to keep the longitudinal steel at the correct locations. If longitudinal steel can be placed at the correct locations within tolerance limits, transverse steel is no longer needed.

Degree of Restraint(DOR) of Longitudinal Steel at Continuously Reinforced Concrete Pavement(CRCP) Against Environmental Loadings (환경하중에 의한 연속철근콘크리트(CRCP) 종방향 철근의 구속정도)

  • Nam, Jeong-Hee;Ahn, Sang Hyeok
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.95-104
    • /
    • 2014
  • PURPOSES : The purpose of this study is to evaluate the degree of restraint (DOR) of longitudinal steel at continuously reinforced concrete pavement (CRCP) against environmental loadings. METHODS : To measure the longitudinal steel strain, 3-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10 min. intervals during 259 days. In order to properly analyze the steel strains first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into 12 phases with different events such as before paving, during concrete hardening, and after first cracking, etc. RESULTS : Thermal strain rate (TSR) concept is defined as the linear strain variations with temperature changes and restraints rate of longitudinal steel against environmental loadings (especially thermal loading) with different cases is defined as degree of restraint(DOR). New concept of DOR could be indirect indicator of crack width behaviors of CRCP. CONCLUSIONS : Before paving, DOR of longitudinal steel is almost same at the coefficient of thermal expansion of steel ($12.44m/m/^{\circ}C$) because of no restraint boundary condition. After concrete pouring, DOR is gradually changed into -1 due to concrete stiffness developing with hydration. After first cracking at crack induced area, values of DOR are around -3~-5. The negative DOR stands for the crack width behavior instead of steel strain behavior. During winter season, DOR reached to -5.77 as the highest, but spring this values gradually reduced as -1.7 as the lowest. Based on this observation, we can presume crack width decreased over time within the time frame of this study. This finding is not consistent with the current theory on crack width variations over time, so further study is necessary to identify the causes of crack width reducing. One of the reasons could be related to concrete stress re-distribution and stress relaxation.

Field Application and Performance of Continuously Reinforced Concrete Pavement via Mechanical Tube-feeding Method (기계식 연속철근콘크리트포장의 현장 적용성 및 거동 분석 연구)

  • Choi, hooseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2016
  • PURPOSES : The field application and performance of continuously reinforced concrete pavement (CRCP), constructed by using the mechanical tube-feeding method, are evaluated in this study. METHODS: The location of the rebar was evaluated by using the MIRA system. The early-age CRCP performance was evaluated via visual survey, in which the crack spacing and crack width were examined. RESULTS: The location of longitudinal reinforcing bars was evaluated via MIRA testing and the results showed that the longitudinal rebars all lie within a given tolerance limit (${\pm}2.5cm$) of the target elevation. In addition, owing to the low temperature when the concrete was pured, the crack spacing in the Dae-Gu direction is slightly wider than that of the Gwang-Ju direction. Almost all of the crack spacings lay within the range of 1.0 m~3.0 m. A crack width of <0.3 mm was measured at the pavement surface. However, as revealed by the field survey, the crack spacing was not correlated with the crack width. CONCLUSIONS : In CRCP constructed by using the mechanical tube-feeding method, almost all of the longitudinal reinforcing bars lay within the tolerance limit (2.5 cm) of the target elevation. The concrete-placing temperature affects the crack spacing, owing to variations in the zero-stress temperature. Crack survey results show that there is no correlation between the crack spacing and crack width in CRCP.

Horizontal Cracks in Continuously Reinforced Concrete Pavement Structures (연속철근콘크리트 도로포장 구조물의 내부 수평균열)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.425-429
    • /
    • 2006
  • Horizontal cracks at the mid-depth of concrete slabs were observed at a section of the continuously reinforced concrete pavement(CRCP) structures on the Korea Highway Corporation's Test Road. To investigate the existence and the extent of horizontal cracks in the concrete slab, a number of cores were taken from the section of CRCP. To identify the causes of horizontal cracks, numerical analyses were conducted. Several variables relative to design, material, and environment were considered in the studies to evaluate possible causes of horizontal cracking. A numerical model of CRCP was developed using the finite element discretization, and the shear and normal tensile stress distributions in CRCP were investigated with the model. Numerical analysis results show that the maximum shear and normal tensile stresses develop near the depth of steel bars at transverse cracks. If those maximum stresses reach the strength of concrete, horizontal cracks occur. The maximum stresses become higher as the environmental loads, coefficient of thermal expansion of concrete, and elastic modulus of concrete increase.

Relationship between Crack Propagation Depth and Crack Width Movement in Continuously Reinforced Concrete Slab Systems (연속철근 콘크리트 슬래브 시스템의 균열진전 깊이와 균열폭 거동 관계 분석)

  • Cho, Young Kyo;Kim, Seong-Min;Oh, Han Jin;Choi, Lyn;Seok, Jong Hwan
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • PURPOSES : The purpose of this study is to investigate the relationship between the crack propagation depth through a slab and crack width movement in continuously reinforced concrete slab systems (CRCSs). METHODS : The crack width movements in continuously reinforced concrete pavement (CRCP) and continuously reinforced concrete railway track (CRCT) were measured in the field for different crack spacings. In addition, the crack width movements in both CRCP and CRCT were simulated using finite element models of CRCP and CRCT. The crack width movements, depending on the unit temperature change, were obtained from both the field tests and numerical analysis models. RESULTS : The experimental analysis results show that the magnitudes of the crack width movements in CRCSs were related to not only the crack spacing, but also the crack propagation depth. In CRCP, the magnitudes of the crack width movements were more closely related to the crack propagation depths. In CRCT, the crack width movements were similar for different cracks since most were through cracks. If the numerical analysis was performed to predict the crack width movements by assuming that the crack propagates completely through the slab depth, the predicted crack width movements were similar to the actual ones in CRCT, but those may be overestimated in CRCP. CONCLUSIONS : The magnitudes of the crack width movements in CRCSs were mainly affected by the crack propagation depths through the slabs.

Study on Fatigue Life of Continuously Reinforced Concrete Pavement with Design Parameter (설계변수별 연속철근 콘크리트 포장의 피로수명 연구)

  • Park, Jong-Sup;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • A laboratory investigation is conducted to characterize and quantify fatigue lives of continuously reinforced concrete pavements (CRCP) with initial design parameters. Eight specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on each initial design parameter. The comparison indicates that the fatigue lives of CRCP specimens with initial cracks increases with increasing the initial crack spacing, and CRCP specimens with reinforcements at top of the concrete slab have more fatigue lives than those with reinforcements at midheight of the concrete slab. In addition, the fatigue lives were significantly affected by soil conditions under the CRCP specimens. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.

Analysis of Longitudinal Steel Behaviors of Continuously Reinforced Concrete Pavement at Early Age (연속철근콘크리트(CRCP) 종방향 철근의 초기거동 분석)

  • Nam, Jeong-Hee;Jeon, Sung Il
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • PURPOSES : The purpose of this study is to analyse the longitudinal steel strain and stress of continuously reinforced concrete pavement(CRCP) with longitudinal and transverse direction at early age using stress dependent strain analysis method. METHODS : To measure the longitudinal steel strain, 9-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10min. intervals during 30days. In order to properly analyze the steel stress first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into stress dependent strain (elastic strain) and stress independent strain (thermal strain) and then stress dependent strain was applied to stress calculation of longitudinal steels. RESULTS : Steel strains were successfully measured during 30days. To verify the accuracy of temperature compensation process, measured coefficient of thermal expansion(COTE,$11.46{\times}10^{-6}m/m/^{\circ}C$) of longitudinal steel before paving was compared with that of unrestrained steel. Max. steel stress in the transverse direction shows about 266MPa at 23days after placement. CONCLUSIONS : Steel stresses in the longitudinal and transverse direction have been evaluated. In longitudinal direction, steel stress from the crack was rapidly reduced from 183MPa at crack to 18MPa from 600mm apart the crack. From this observation, stress effective length can be identified as within 600mm apart from the crack. In transverse direction, max. stress point was located near the center of pavement width and stress level(266MPa) is about 66% of yield stress of steel.

Effect of Longitudinal Steel Ratio on Behavior of CRCP System (연속철근콘크리트 도로포장의 거동에 종방향 철근비가 미치는 영향)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.58-61
    • /
    • 2006
  • The effect of the steel ratio on the behavior of continuously reinforced concrete pavement (CRCP) under moving wheel loads and environmental loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered: (1) to evaluate the load transfer efficiency (LTE) at transverse cracks; (2) to investigate strains in CRCP when the system is subjected to moving vehicle loads; (3) and to investigate the time histories of the crack spacing variations. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests. The strains in the concrete slab and the bond braker layer under moving vehicle loads were obtained using embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio. However, the changes in the crack spacings are affected by the steel ratio.

  • PDF

Experimental Analysis of Terminus and Horizontal Crack Behaviors in Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 단부 및 수평균열 거동 실험적 분석)

  • Cho, Young-Kyo;Kim, Seong-Min;An, Zuog;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.81-91
    • /
    • 2011
  • This study was conducted to evaluate the necessity of the anchor lug system in continuously reinforced concrete pavement(CRCP) by comparing longitudinal displacements of CRCPs with and without anchor lugs, and to investigate the effect of horizontal cracking on CRCP performance by measuring the vertical displacements. The measurements before and after the anchor lug section was separated were conducted for 12 days in June, and for 14 days in August after the abrupt displacements according to cutting disappeared, respectively. This short term measurement results showed that when anchor lugs were installed, a daily displacement variation at any location was less than 0.1mm; therefore, longitudinal movements were negligibly small. When there were no anchor lugs, longitudinal displacements mainly occurred near the free end and the displacement variation was small; therefore, an expansion joint system seems to be employed at a CRCP terminus without installing anchor lugs. However, further studies are needed to verify the terminus behavior due to annual temperature changes. The horizontal crack width variation was ignorable and did not affect the vertical displacement of the slab. Therefore, the horizontal crack did not delaminate the slab and did not seem to reduce the structural capacity and performance of CRCP.