• Title/Summary/Keyword: continuous self mapping

Search Result 14, Processing Time 0.022 seconds

Preliminary Study on the MR Temperature Mapping using Center Array-Sequencing Phase Unwrapping Algorithm (Center Array-Sequencing 위상펼침 기법의 MR 온도영상 적용에 관한 기초연구)

  • Tan, Kee Chin;Kim, Tae-Hyung;Chun, Song-I;Han, Yong-Hee;Choi, Ki-Seung;Lee, Kwang-Sig;Jun, Jae-Ryang;Eun, Choong-Ki;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.131-141
    • /
    • 2008
  • Purpose : To investigate the feasibility and accuracy of Proton Resonance Frequency (PRF) shift based magnetic resonance (MR) temperature mapping utilizing the self-developed center array-sequencing phase unwrapping (PU) method for non-invasive temperature monitoring. Materials and Methods : The computer simulation was done on the PU algorithm for performance evaluation before further application to MR thermometry. The MR experiments were conducted in two approaches namely PU experiment, and temperature mapping experiment based on the PU technique with all the image postprocessing implemented in MATLAB. A 1.5T MR scanner employing a knee coil with $T2^*$ GRE (Gradient Recalled Echo) pulse sequence were used throughout the experiments. Various subjects such as water phantom, orange, and agarose gel phantom were used for the assessment of the self-developed PU algorithm. The MR temperature mapping experiment was initially attempted on the agarose gel phantom only with the application of a custom-made thermoregulating water pump as the heating source. Heat was generated to the phantom via hot water circulation whilst temperature variation was observed with T-type thermocouple. The PU program was implemented on the reconstructed wrapped phase images prior to map the temperature distribution of subjects. As the temperature change is directly proportional to the phase difference map, the absolute temperature could be estimated from the summation of the computed temperature difference with the measured ambient temperature of subjects. Results : The PU technique successfully recovered and removed the phase wrapping artifacts on MR phase images with various subjects by producing a smooth and continuous phase map thus producing a more reliable temperature map. Conclusion : This work presented a rapid, and robust self-developed center array-sequencing PU algorithm feasible for the application of MR temperature mapping according to the PRF phase shift property.

  • PDF

POSITIVE SOLUTIONS FOR A NONLINEAR MATRIX EQUATION USING FIXED POINT RESULTS IN EXTENDED BRANCIARI b-DISTANCE SPACES

  • Reena, Jain;Hemant Kumar, Nashine;J.K., Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.709-730
    • /
    • 2022
  • We consider the nonlinear matrix equation (NMEs) of the form 𝓤 = 𝓠 + Σki=1 𝓐*iℏ(𝓤)𝓐i, where 𝓠 is n × n Hermitian positive definite matrices (HPDS), 𝓐1, 𝓐2, . . . , 𝓐m are n × n matrices, and ~ is a nonlinear self-mappings of the set of all Hermitian matrices which are continuous in the trace norm. We discuss a sufficient condition ensuring the existence of a unique positive definite solution of a given NME and demonstrate this sufficient condition for a NME 𝓤 = 𝓠 + 𝓐*1(𝓤2/900)𝓐1 + 𝓐*2(𝓤2/900)𝓐2 + 𝓐*3(𝓤2/900)𝓐3. In order to do this, we define 𝓕𝓖w-contractive conditions and derive fixed points results based on aforesaid contractive condition for a mapping in extended Branciari b-metric distance followed by two suitable examples. In addition, we introduce weak well-posed property, weak limit shadowing property and generalized Ulam-Hyers stability in the underlying space and related results.

Health Education Curriculum Constructs and Dimensional Properties for Korean Middle School Students in Multidimensional Scaling Analysis (다차원척도법을 이용한 중학교 보건교육 교과영역 구축 및 속성 분석)

  • Park, Kyoung-Ok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.7
    • /
    • pp.1-17
    • /
    • 2006
  • Background: School is a primary health education setting for adolescents and the continuous support should be provided to renew school health education curriculum correspondent to cultural changes in Korean society. Objectives: This study was conducted to identify the principals and teachers' health education needs for their students and to analyze their conceptual map for health education curriculum at school. Methods: The sample size of the preliminary study was 321 of the teachers in elementary, middle, and high school, and that of the main study was 355 middle school principals and teachers over the country. The self-administered mailing survey was conducted to collect the available health education topics in the preliminary study, to identify the factor structure of the health education topics and to analyze the conceptual properties on health education with exploratory factor analysis and multidimensional scaling analysis in SPSS 12.0. Results: A total of 21 health education topics were collected from the preliminary survey and 31 topics were, comprehensively, generated for the main survey. In exploratory factor analysis, seven factors were generated in 1.0 or greater Eigen value standard. The seven factors were 'life health promotion,' 'disease prevention and drug control,' 'bulling and aggression prevention,' 'injury and sexual harassment prevention,' human-efficacy and regulation,' 'health protection for adolescence,' and 'alcohol and tobacco control.' The educational need scores were the highest in 'human-efficacy and regulation' and 'injury and sexual harassment prevention.' The two-dimensional cooperates were generated for the 31 health education topics and the two dimensional properties which divided the conceptual space were 'health-safety' for one and 'public/environmental-individual/personal' for the other. That is, middle school principals and teachers primarily, understand the health education curriculum in the sense of 'health vs. safety' and 'public/environmental vs individual/personal.' Conclusions: Health education curriculum and textbook should be developed based on teachers' needs and conditions for health education in school fields. The field-based health education programs or textbook would make more possible problem-solving health education for youth in real school fields.

  • PDF

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.