• Title/Summary/Keyword: continuous reactor

Search Result 582, Processing Time 0.027 seconds

An Expanded Use of Reactor Power Cutback System to Avoid Reactor Trips in the Event of an Inward Control Element Assembly Deviation (제어봉 인입편차시의 원자로 비상정지 방지를 위한 출력 급감발 계통의 확대 적용)

  • Hwang, Hae-Ryong;Ahn, Dawk-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.276-284
    • /
    • 1993
  • The ABB-CE System-80 reactor power cutback system(RPCS) is designed to enable continuous operation of the reactor without trip in the events of the loss of one of the two main feedwater pumps and loss of load, and thus improves plant availability in a cost effective manner. In this study expansion of RPCS has been investigated for continuous reactor operation without trip in the event of an inward control element assembly(CEA) deviation including a single rod drop. Under the expanded function of RPCS the control system will provide a rapid core power reduction on demand by releasing CEAs to drop into the core and reduce the turbine power, if necessary, to follow the reactor power variation. This design feature which is included as the new design features to be incorporated in the ABB-CE System-80+ meets the EPRI advanced light water reactor(ALWR) requirements. For this study core analysis models of System-80+ have been developed to simulate the nuclear steam supply system(NSSS) response as well as the RPCS initiation of rapid CEA insertion. The results of this study demonstrate that the reactor trip can be avoided in the event of inward CEA deviation including a single rod drop by the RPCS initiation and thus the plant availability and capacity factor would be increased.

  • PDF

Automatic Inspection of Reactor Vessel Welds using an Underwater Mobile Robot guided by a Laser Pointer

  • Kim, Jae-Hee;Lee, Jae-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1116-1120
    • /
    • 2004
  • In the nuclear power plant, there are several cylindrical vessels such as reactor vessel, pressuriser and so on. The vessels are usually constructed by welding large rolled plates, forged sections or nozzle pipes together. In order to assure the integrity of the vessel, these welds should be periodically inspected using sensors such as ultrasonic transducer or visual cameras. This inspection is usually conducted under water to minimize exposure to the radioactively contaminated vessel walls. The inspections have been performed by using a conventional inspection machine with a big structural sturdy column, however, it is so huge and heavy that maintenance and handling of the machine are extremely difficult. It requires much effort to transport the system to the site and also requires continuous use of the utility's polar crane to move the manipulator into the building and then onto the vessel. Setup beside the vessel requires a large volume of work preparation area and several shifts to complete. In order to resolve these problems, we have developed an underwater mobile robot guided by the laser pointer, and performed a series of experiments both in the mockup and in the real reactor vessel. This paper introduces our robotic inspection system and the laser guidance of the mobile robot as well as the results of the functional test.

  • PDF

Aeration control based on respirometry in a sequencing batch reactor (호흡률에 기반한 연속회분식반응조의 포기공정 제어)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

Inactivation of Ralstonia Solanacearum using Filtration-Plasma Process (여과-Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1165-1173
    • /
    • 2014
  • For the field application of dielectric barrier discharge plasma reactor in nutrient solution culture, a filtration-DBD (dielectric barrier discharge) plasma reactor was investigated for the Ralstonia solanacearum which causes bacterial wilt in aquiculture. The filtration-DBD plasma reactor system of this study was consisted of filter, plasma reactor, reservoir. The DBD plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the inactivation of R. solanacearum with filter media type in filter reactor ranked in the following order: anthracite > fiber ball > sand > ceramic ball > quartz ceramic. In filtration + plasma process, disinfection effect with the voltage was found to small. In disinfection time of 120 minutes, residual R. solanacearum concentration was 1.17 log (15 CFU/mL). When the continuous disinfection time was 120 minute, disinfection effect was thought to keep the four days. In sporadic operation mode of 30 minutes disinfection - 24 hours break, residual R. solanacearum concentration after five days was 0.3 log (2 CFU/mL). It is considered that most of R. solanacearum has been inactivated substantially.

Supercritical CO2-cooled fast reactor and cold shutdown system for ship propulsion

  • Kwangho Ju;Jaehyun Ryu;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1022-1028
    • /
    • 2024
  • A neutronics study of a supercritical CO2-cooled fast reactor core for nuclear propulsion has been performed in this work. The thermal power of the reactor core is 30 MWth and a ceramic UO2 fuel can be used to achieve a 20-year lifetime without refueling. In order to make a compact core with inherent safety features, the drum-type reactivity control system and folding-type shutdown system are adopted. In addition, we suggest a cold shutdown system using gadolinium as a spectral shift absorber (SSA) against flooding. Although there is a penalty of U-235 enrichment for the core embedded with the cold shutdown system, it effectively mitigates the increment of reactivity at the flooding of seawater. In this study, the neutronics analyses have been performed by using the continuous energy Monte Carlo Serpent 2 code with the evaluated nuclear data file ENDF/B-VII.1 Library. The supercritical CO2-cooled fast reactor core is characterized in view of important safety parameters such as the reactivity worth of reactivity control systems, fuel temperature coefficient (FTC), coolant temperature coefficient (CTC), and coolant temperature-density coefficient (CTDC). We can say that the suggested core has inherent safety features and enough flexibility for load-following operation.

Continuous Production Process of Methyl Fructoside Using Alginate-enclosed Microspheres (Alginate-enclosed Microspheres를 이용한 메틸 프룩토시드의 연속생산공정)

  • 허주형;김해성
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.159-165
    • /
    • 1995
  • Methyl fructoside was continuously produced in suspended bed enzyme reactor using alginate-enclosed microspheres biocatalyst which was developed for enzymatic synthesis of methyl fructoside. And the continuous operating conditions were optimized with reactor simulation in order to demonstrate a feasibility of commercialization of the continuous enzymatic production process development. The yield and productivity of methyl fructoside were as high as 47.1%o and $2g/\ell$-hr, respectively. The optimum operating conditions were pH 4.8, 30%(v/v) of methanol content and $2U/m\ell$ of enzyme activity when the initial concentration of sucrose is $0.291mo1/\ell$ at the reaction temperature of $25^{\circ}C$.

  • PDF

Recovery of Gold from Refractory Arsenic Gold Concentrate by a Process of Thiobacillus Ferrooxidans Oxidation - Cyanidation

  • Zhang, Chuanfu;Min, Xiaobo;Chai, Liyuan;Chen, Weiliang;Okido, Masazumi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.159-164
    • /
    • 2001
  • A novel fluidized-bed reactor was designed and installed for bioleaching in a semi-continuous way, by which a process for bioleaching-cyanidation of Guangxi Jinya refractory gold arsenical concentrate was studied. An arsenic extraction rate reaches 82.5% after 4-day batch biooxidation of the concentrate under the optimized condition of pH 2.0, ftrric ion concentration 6.5g/L and pulp concentration 10%. And leaching rate of gold in the following gold cyanidation is over 90%. The parameters of three series fluid-bed reactors exhibit stability during the semi-continuous bioleaching of the concentrate. Arsenic in the concentrate can be got rid of 91% after 6-day leaching. Even after 4 days, 82% of arsenic extraction rate was still obtained. The recovery rates of gold are 92% and 87.5% respectively in cyaniding the above bioleached residues. The results will provide a base for further commercial production of gold development.

  • PDF

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid

  • Li, Xuan Zhong;Hauer, Bernhard;Rosche, Bettina
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

Nitrogen and Phosphorus Removal from Plating Wastewater Using the Soil Reactor (토양 반응조를 이용한 도금폐수 중의 질소 및 인 제거)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Shin, Dae-Yun;Im, Byung-Gab;Jeon, Gee-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.205-213
    • /
    • 2009
  • A laboratory experiment was conducted to investigate nitrogen removal from plating wastewater by a soil reactor. A combination of soil, waste oyster shell and activated sludge were used as a loading media in a soil reactor. The addition of 20% waste oyster shell and activated sludge to the soil accelerated nitrification (88.6% ${NH_4}^{+}-N$ removal efficiency) and denitrification (84.3% ${NO_3}^{-}-N$ removal) in the soil reactor, respectively. In continuous removal, the influent ${NH_4}^{+}-N$ was mostly converted to nitrate nitrogen in the nitrification soil reactor and only a small amount of ${NH_4}^{+}-N$ was found in the effluent. When methanol was added as a carbon source to the denitrification soil reactor, the average removal efficiency of ${NO_3}^{-}-N$ significantly increased. The ${NO_3}^{-}-N$ removal by methanol addition in the denitrification soil reactor was mainly due to denitrification. The phosphorus was removed by the waste oyster shell media in the nitrification soil reactor. Moreover, the phosphorus removal in the denitrification soil reactor was achieved by synthesis of bacteria and the denitrification under anaerobic conditions. The approximate number of nitrifiers and denitrifiers was $3.3{\times}10^5\;MPN/g$ soil at a depth of $1{\sim}10\;cm$ and $3.3{\times}10^6\;MPN/g$ soil at a depth of $10{\sim}20\;cm$, respectively, in the soil reactor mixed with a waste oyster shell media and activated sludge.

Characteristics of the Bioreactors of Hydrogen-producing Immobilized Cells (III) -Hydrogen Production in a Nozzle Loop Reactor- (수소생산 고정화 생물반응기의 특성(III) -루프 반응기에서의 수소 생산-)

  • 이충곤;선용호;한정우;이현순;조영일
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.629-633
    • /
    • 1989
  • In the continuous reactor, the hydrogen production rate and residual glucose concentration were increased with increase of input glucose concentration, dilution rate, and recycle rate. The maximum production rate was 91 mL/Lㆍh at dilution rate 0.4/h, input glucose concentration 5.4g/L, and recycle rate 70/h in this experimental range.

  • PDF