• Title/Summary/Keyword: continuous reactor

Search Result 578, Processing Time 0.029 seconds

Continuous Ethanol Fermentation in Air-lift Reactor by Flocculent Saccharomyces cerevisiae CA-1 (응집성 Saccharomyces cerevisiae CA-1에 의한 에탄올 연속발효)

  • Lee, Yong-Bum;Shim, Sang-Kook;Han, Myun-Soo;Chung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.717-722
    • /
    • 1995
  • Using a flocculating Saccharomyes cerevisiae CA-1, an air-lift reactor equipped with a modified settler was used for ethanol fermentation. The effects of conditions such as aeration rate, initial glucose concentration, and dilution rate were studied using the air-lift reactor. In batch fermentation, optimum aeration rate was 0.5 vvm. In continuous fermentation, aeration rate and initial pH were fixed 0.5 vvm and 4.5, substrate concentration and dillution rate were changed 10-15% and 0.1-1.3. The maximum ethanol productivity was shown to be 20.4 g/l$\cdot $h in 10% glucose and 0.7 h$^{-1}$ dilution rate., and optimum operation condition considering the ethanol productivity and glucose utilization ratio was 0.5 h$^{-1}$ dilution rate in 10% glucose concentration.

  • PDF

Performance Comparison of Continuous Reactors for Bioethanol Production Based on Glycerol (글리세롤 기반의 바이오에탄올 생산을 위한 연속생산반응기의 성능 비교)

  • Lee, Sang-Jun;Song, Yoon-Seok;Kim, Sung-Bong;Kang, Sung-Woo;Han, Sung-Ok;Park, Chul-Hwan;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.328-332
    • /
    • 2011
  • Ethanol production using glycerol as a carbon source was performed by Enterobacter aerogenes immobilized on calcium alginate beads. To improve the ethanol production, the optimal conditions such as loading amount of immobilized cells and glycerol concentration were investigated. The optimal loading amount of immobilized cells and glycerol concentration were 10 mL of calcium alginate bead and 10 g/L, respectively. Consequently, glycerol consumption rate, ethanol concentration and yield were 0.32 g/$L{\cdot}h$, 3.38 g/L and 0.43 g/g on the batch production, respectively. Continuous production of ethanol was successfully achieved using two types of immobilized cell reactors (continuous stirred tank reactor and packed bed reactor) from 10 g/L of glycerol. In the continuous stirred tank reactor, glycerol consumption, ethanol concentration, specific productivity and yield were 9.8 g, 4.67 g/L, 1.17 g/$L{\cdot}h$, 0.48 g/g, respectively. The concentration of produced ethanol was 38-44% higher comparison to batch fermentation, and continuous stirred tank reactor showed better performance than packed bed reactor.

Color Removal from Disperse Dye Solution Using White Rot Fungi (백색부후균을 이용한 분산염료용액의 색 제거)

  • 이현욱;손동찬;임동준
    • Textile Coloration and Finishing
    • /
    • v.12 no.1
    • /
    • pp.32-43
    • /
    • 2000
  • Batch culture system and continuous culture systems were used to investigate the removal of disperse dye using white rot fungi. White rot fungi used in the study were Coriolus hirsutus IFO 4917, Lenzites betulina IFO 6266, Coriolus versicolor IFO 30340 and Phanerochaete chrysosporium IFO 31249. The results of the batch culture experiment showed that white rot fungi used in this study had excellent dye removal abilities. Phnerochete chrysosporium IFO 31249 was especially effective on the removal of disperse dyes. And continuous treatment of disperse red 60 was studied under two type of reactor using Phanerochaete chrysosporium IFO 31249. The removal efficiency of disperse red 60 for immobilized Phanerochaete chrysosporium IFO 31249 in continuous reactor with vertical matrix was increased 1.3 fold in $1.4\;hr^{-1}$ dilution rate when compared with continuous reactor without vertical matrix.

  • PDF

Continuous Production of γ-aminobutyric Acid by Immobilization of Lactobacillus brevis (Lactobacillus brevis의 고정화 균체에 의한 γ-aminobutyric acid의 연속 생산)

  • 류병호;전재호
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.167-173
    • /
    • 2004
  • The optimal conditions for the continuous production of $\gamma$-aminobutyric acid by immobilization of Lactobacillus brevis BH-21 using column type reactor were investigated. The optimal conditions of operation were 2.2 mm diameter bead of 3.0% sodium alginate at 10 mL/h of substrate feeding rate. Continuous production by immobililzed cells showed the highest productivity with replacement of fresh medium in every 48h for fourth fermentatoin cycle following the rendition of $\gamma$-aminobutyric acid productivity. A productivity of $\gamma$-aminobutyric acid could be obtained for 25 days by continuous column type reactor under optimal conditions.

Modeling and controller design for a continuous copolymerization reactor (연속식 공중합 반응기의 모델링 및 제어기 설계)

  • 황우현;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.788-791
    • /
    • 1996
  • A mathematical model is developed for thermal solution copolymerization of styrene and acrylonitrile in a continuous stirred tank reactor(CSTR). Computational studies are carried out with the continuous copolymerization system model developed in this work to give the monomer conversion, copolymer composition and the average molecular weights of the copolymer. By performing the dynamic analysis of the reaction system, the polymer properties against the changes in the operating conditions are determined quantitatively. The cascade PID and fuzzy controller show satisfactory performances for both set point tracking and disturbance rejection. Especially, the fuzzy controller is superior to the PID controller.

  • PDF

Continuous Production of Fructo-oligosaccharides by Immobilized Cells of Aureobasidium pullulans

  • Yun, Jong-Won;Jung, Kyung-Hoon;Jeon, Yeong-Joong;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.98-101
    • /
    • 1992
  • Continuous production of fructo-oligosaccharides employing a packed bed reactor charged with immobilized cells of Aureobasidium pullulans was investigated. The optimum conditions for reactor operation were a feed concentration of 860 g/l; a feed rate, expressed as superficial space velocity of $0.2\;h^{-1}$, and a temperature of $50^\circ{C}$. Under these optimum conditions, the productivity of the reactor was $180\;g/l\cdot{h}$. Initial activity was maintained for more than 100 days. The reactor was successfully scaled up to a production scale of 1000l.

  • PDF

Synthesis and analysis CdSe/ZnS quantum dot with a Core/shell Continuous Synthesis System Using a Microfluidic Reactor (미세유체반응기를 이용한 core/shell 연속 합성 시스템을 이용한 CdSe/ZnS 양자점 합성 및 분석)

  • Hong, Myung Hwan;Joo, So Young;Kang, Lee-Seung;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • Core/shell CdSe/ZnS quantum dots (QDs) are synthesized by a microfluidic reactor-assisted continuous reactor system. Photoluminescence and absorbance of synthesized CdSe/ZnS core/shell QDs are investigated by fluorescence spectrophotometry and online UV-Vis spectrometry. Three reaction conditions, namely; the shell coating reaction temperature, the shell coating reaction time, and the ZnS/CdSe precursor volume ratio, are combined in the synthesis process. The quantum yield of the synthesized CdSe QDs is determined for each condition. CdSe/ZnS QDs with a higher quantum yield are obtained compared to the discontinuous microfluidic reactor synthesis system. The maximum quantum efficiency is 98.3% when the reaction temperature, reaction time, and ZnS/CdSe ratio are $270^{\circ}C$, 10 s, and 0.05, respectively. Obtained results indicate that a continuous synthesis of the Core/shell CdSe/ZnS QDs with a high quantum efficiency could be achieved by isolating the reaction from the external environment.

Effect of Ultraviolet Radiation on the Mortality Rate of the Marine Dinoflagellate Amphidinium Carteras Causing a Red Tide (적조생물 Amphidinium Carterae의 사멸에 미치는 자외선의 영향)

  • 김삼혁;최칠남;차월석;정경훈;정오진
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.463-468
    • /
    • 2000
  • Ther effect of UV on the mortality rate of toxic dinoflagellate Amphidinium Carterae causing a red tide in the coastal area of korea was investigated in the batch and continuous-scale reactor equipped with ultraviolet irradiation-apparatus. Degussa P(sub)25 titanium oxide, a photocatalyst proved to be effective of the mortality of Amphidinium Carterae supplied with photocatalyst and UV radiation were greater than 95% in 2 minutes of UV radiation and the rate were higher than that by UV-radiation without titanium dioxide in the batch and continuous-flow scale reactor, The mortality time of Amphidinium Carterae increased with the cell density under UV-illumination in the batch scale reactor. The mortality rate in the density of $5.0$\times$10^4$ cell/mL at the same experimental condition was more than 90% in 4 minutes in the continuous flow scale reactor. The percentage of 99.9$\pm$0.1% of Amphidinium Carterae in the density of $0.5$\times$10^4$ cells/mL was died in 20 minutes when the phytoplankton was illuminated with UV-radiation without photocatalyst.

  • PDF

Continuous Operation of $CO_2$/NOx-free 50kW Checmial-Looping Combustor ($CO_2$/NOx-free 50kW 매체순환식 가스연소기 산화-환원 연속반응 실증)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae;Yi, Chang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.227-234
    • /
    • 2004
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion(CLC) may yield great advantages of savings of energy to $CO_2$ separation and suppressing the effect on environment. In chemical-looping combustor, fuel is oxidized by metal oxide medium (oxygen carrier particle) in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. The purpose of this study is to demonstrate inherent $CO_2$ separation and no NOx emission and to confirm high $CO_2$ selectivity, no side reaction (i.e., carbon deposition, hydrogen generation) by continuous reduction and oxidation experiment in a 50kWtb chemical-looping combustor. NiO/bentonite particle was used as a bed material and $CH_4$ and air were used as reacting gases for reduction and oxidation respectively.

  • PDF

Study of Wastewater Treatment in the Continuous Electro-Coagulation Plug Flow Reactor after Ozone Treatment (오존처리수의 전기응집처리 연구)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2001
  • The water treatment by electrochemical method was performed to increase the yield of production. Continuous plug flow reactor was operated to treat poultry and domestic wastewaters. Experimental results were compared with experimental results of the wastewater treatment by chemical coagulation, they were increased over 10% in the removal efficiency of COD and the production rate of sludge was reduced by 30%. Ozone utilized to degrade or change the organic chemical structures, which removal efficiency increased to 20% in the electro-coagulation reactor. Economic evaluation was performed to estimate total cost of electro-coagulation reactor in comparison with that of chemical coagulation method. The total cost to treat 1000 ton/day of domestic wastewater was reduced by 50%.

  • PDF