DOI QR코드

DOI QR Code

Synthesis and analysis CdSe/ZnS quantum dot with a Core/shell Continuous Synthesis System Using a Microfluidic Reactor

미세유체반응기를 이용한 core/shell 연속 합성 시스템을 이용한 CdSe/ZnS 양자점 합성 및 분석

  • Hong, Myung Hwan (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Joo, So Young (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kang, Lee-Seung (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Chan Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
  • 홍명환 (고등기술연구원 신소재공정센터) ;
  • 주소영 (고등기술연구원 신소재공정센터) ;
  • 강이승 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터)
  • Received : 2018.04.04
  • Accepted : 2018.04.25
  • Published : 2018.04.28

Abstract

Core/shell CdSe/ZnS quantum dots (QDs) are synthesized by a microfluidic reactor-assisted continuous reactor system. Photoluminescence and absorbance of synthesized CdSe/ZnS core/shell QDs are investigated by fluorescence spectrophotometry and online UV-Vis spectrometry. Three reaction conditions, namely; the shell coating reaction temperature, the shell coating reaction time, and the ZnS/CdSe precursor volume ratio, are combined in the synthesis process. The quantum yield of the synthesized CdSe QDs is determined for each condition. CdSe/ZnS QDs with a higher quantum yield are obtained compared to the discontinuous microfluidic reactor synthesis system. The maximum quantum efficiency is 98.3% when the reaction temperature, reaction time, and ZnS/CdSe ratio are $270^{\circ}C$, 10 s, and 0.05, respectively. Obtained results indicate that a continuous synthesis of the Core/shell CdSe/ZnS QDs with a high quantum efficiency could be achieved by isolating the reaction from the external environment.

Keywords

References

  1. K. Kim, J. Y. Woo, D. C. Lee, J. Lee, S. Jeong and D. Kim: Sci. Rep., 7 (2017) 43581. https://doi.org/10.1038/srep43581
  2. H. McDaniel, N. Fuke, N. S. Makarov, J. M. Pietryga and V. I. Klimov: Nature, 4 (2013) 2887.
  3. L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. Hyun, G. G. Malliaras, T. Hanrath and F. W. Wise: Nat. Nanotechnol., 7 (2012) 369. https://doi.org/10.1038/nnano.2012.63
  4. T. P. A. Ruberu, N. C. Nelson, I. I. Slowing and J. J Vela: J. Phys. Chem. Lett., 3 (2012) 2798. https://doi.org/10.1021/jz301309d
  5. S. Taniguchi, M. Green, S. B. Rizvi and A. Seifalian: J. Mater. Chem., 21 (2011) 2877. https://doi.org/10.1039/c0jm03527k
  6. D. J. Norris, N. Yao, F. T. Charnock and T. A. Kennedy: Nano Lett., 1 (2001) 3. https://doi.org/10.1021/nl005503h
  7. C. B. Murray, D. J. Norris and M. G. Bawendi: J. Am. Chem. Soc., 115 (1993) 8706. https://doi.org/10.1021/ja00072a025
  8. W. R. Ware and B. A. Baldwin: J. Chem. Phys., 43 (1965) 1194. https://doi.org/10.1063/1.1696903
  9. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi: J. Phys. Chem. B, 101 (1997) 9463. https://doi.org/10.1021/jp971091y
  10. Y. Wang and Y. Xia: Nano Lett., 4 (2004) 2047. https://doi.org/10.1021/nl048689j
  11. N. S. A. Eom, T. Kim, Y. Choa and B. S. Kim: J. Korean Powder Metall. Inst., 19 (2012) 442. https://doi.org/10.4150/KPMI.2012.19.6.442
  12. H. Zhang, X. Peng, L. Sun and F. Liu: MATEC Web of Conferences, 26 (2015) 01006.
  13. A. Jahn, J. E. Reiner, W. N. Vreeland, D. L. DeVoe, L. E. Locascio and M. Gaitan: J. Nanopart. Res., 10 (2008) 925. https://doi.org/10.1007/s11051-007-9340-5
  14. J. W. Hong and S. R. Quake: Nat. Biotechnol., 21 (2003) 1179. https://doi.org/10.1038/nbt871
  15. A. Abou-Hassan, O. Sandre and V. Cabuil: Angew. Chem. Int. Ed., 49 (2010) 6268. https://doi.org/10.1002/anie.200904285
  16. J. B. Edel, R. Fortt, J. C. deMello and A. J. deMello: ChemComm, 10 (2002) 1136.
  17. E. M. Chan, R. A. Mathies, and A. P. Alivisatos: Nano Lett., 3 (2003) 199. https://doi.org/10.1021/nl0259481
  18. J. I. Park, A. Saffari, S. Kumar, A. Günther and E. Kumacheva: Annu. Rev. Mater. Res., 40 (2010) 415. https://doi.org/10.1146/annurev-matsci-070909-104514
  19. A. J. Demello, Nature, 442 (7101) 394. https://doi.org/10.1038/nature05062
  20. D. N. Adamson, D. Mustafi, J. X. Zhang, B. Zheng and R. F. Ismagilov: Lab Chip, 6 (2006) 1178. https://doi.org/10.1039/b604993a
  21. A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev: Phys. Rev. B 68 (2003) 165306. https://doi.org/10.1103/PhysRevB.68.165306
  22. H. Zhu, N. Song and T. Lian: J. Am. Chem. Soc., 132 (2010) 15038. https://doi.org/10.1021/ja106710m
  23. H. Zhu, A. Prakash, D. N. Benoit, C. J. Jones and V. L. Colvin: Nanotechnology. 21 (2010) 255604. https://doi.org/10.1088/0957-4484/21/25/255604