• Title/Summary/Keyword: continuous object

Search Result 399, Processing Time 0.026 seconds

Development of Fuzzy Control System For Uniform Drying in Continuous Dryer

  • Song, D.B.;H.K.Koh;Cho, S.I.;Lee, J.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.668-678
    • /
    • 1996
  • A control system using fuzzy logic for a large capacity continuous dryer has been developed in order to minimize the damage of rice quality. The system has been verified in the case of 17% of object moisture content. With the initial input moisture contents of 20.46%(wb), 20.96%(wb) and 18.98%(wb), the final moisture contents of 17.99%(wb), 17.6%(wb) and 17.23%(wb) are obtained, respectively. The results show that the system controls the moisture content with the maximum error of 0.99% of the object moisture content.

  • PDF

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream

  • Lee, Jeonghun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.227-241
    • /
    • 2021
  • Object detection techniques based on deep learning such as YOLO have high detection performance and precision in a single channel video stream. In order to expand to multiple channel object detection in real-time, however, high-performance hardware is required. In this paper, we propose a novel back-end server framework, a real-time AI vision platform (RAVIP), which can extend the object detection function from single channel to simultaneous multi-channels, which can work well even in low-end server hardware. RAVIP assembles appropriate component modules from the RODEM (real-time object detection module) Base to create per-channel instances for each channel, enabling efficient parallelization of object detection instances on limited hardware resources through continuous monitoring with respect to resource utilization. Through practical experiments, RAVIP shows that it is possible to optimize CPU, GPU, and memory utilization while performing object detection service in a multi-channel situation. In addition, it has been proven that RAVIP can provide object detection services with 25 FPS for all 16 channels at the same time.

A Study on Gripper Force Control Of Manipulator Using Tactile Image (Tactile 영상을 이용한 매니퓰레이터의 그리퍼 힘제어에 관한 연구)

  • 이영재;박영태
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.64-70
    • /
    • 1999
  • When manipulator moves the objects, the object position error can be occurred because of acceleration or negative acceleration according to the direction. So we make manipulator working path for establishing optimal gripper force control preventing occurrence of object position error. And we attached the tactile sensor on the gripper of manipulator which gives us very specific information between manipulator and object. Reasoning of continuous tactile image data, manipulator can sense rotation and slippage and change the grasping force that corrects calculated grasping force and compensation can be possible of the object position error. We use the FSR(Force Sensing Resistor)sensor which consists of 22 by 22 taxels and continuous taxel number is used for filtering and using the moment method for sensing algorithm in our experiment.

  • PDF

An Energy-efficient Edge Detection Method for Continuous Object Tracking in Wireless Sensor Networks (무선 센서 네트워크에서의 연속적인 물체의 추적을 위한 에너지 효율적인 경계 선정 기법)

  • Jang, Sang-Wook;Hahn, Joo-Sun;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.6
    • /
    • pp.514-527
    • /
    • 2009
  • Wireless sensor networks (WSNs) can be used in various applications for military or environmental purpose. Recently, there are lots of on-going researches for detecting and tracking the spread of continuous objects or phenomena such as poisonous gas, wildfires, earthquakes, and so on. Some previous work has proposed techniques to detect edge nodes of such a continuous object based on the information of all the 1-hop neighbor nodes. In those techniques, however, a number of nodes are redundantly selected as edge nodes, and thus, the boundary of the continuous object cannot be presented accurately. In this paper, we propose a new edge detection method in which edge nodes of the continuous object are detected based on the information of the neighbor nodes obtained via the Localized Delaunay Triangulation so that a minimum number of nodes are selected as edge nodes. We also define the sensor behavior rule for tracking continuous objects energy-efficiently. Our simulation results show that the proposed edge detection method provides enhanced performance compared with previous 1-hop neighbor node based methods. On the average, the accuracy is improved by 29.95% while the number of edge nodes, the amount of communication messages and energy consumption are reduced by 54.43%, 79.36% and 72.34%, respectively. Moreover, the number of edge nodes decreases by 48.38% on the average in our field test with MICAz motes.

A CALS Integrated Database Design Utilizing CORBA (CORBA 기반의 CALS 통합 데이터베이스 설계)

  • 우훈식;정석찬
    • The Journal of Society for e-Business Studies
    • /
    • v.2 no.2
    • /
    • pp.155-169
    • /
    • 1997
  • The CALS integrated database is a key information technology in which CALS implements an information sharing system to enable digital data transfers for technical and non-technical information in distributed and heterogeneous environments. Such heterogeneously distributed CALS information needs to be systematically incorporated so that it can provide a global data view for CALS users. In this paper, we investigated the technologies of CALS integrated database, and proposed a system prototype to implement an integrated data environment (IDE) utilizing distributed object environments CORBA (Common Object Request Broker Architecture).

  • PDF

A Derivation of the Accuracy Relationship between the Reconstruction of 3D Object Coordinates and the Number of Closed Curves (폐곡선의 수에 따른 3차원 물체의 좌표 복원 정확도 관계 도출)

  • Lee, Deokwoo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1004-1013
    • /
    • 2017
  • This paper presents a relationship between the number of curves and geometric parameters of a 3D object. Once the relationship is established, the number of closed curves that can reliably represent 3D object is derived. Inspired by Shannon-Nyquist Sampling Theorem, in this paper, approach for sampling rate (defined as the minimum number of curves) for 3D reconstruction is proposed. The relationship is straightforward, is suitable for application to 3D object overlaid with closed-continuous curves, and can achieve efficient 3D reconstruction system in practice. To substantiate the proposed approach, simulation results are provided and the results show that the number of curves can be decreased without loss of generality of characteristics of a target 3D object.

Object Feature Extraction and Matching for Effective Multiple Vehicles Tracking (효과적인 다중 차량 추적을 위한 객체 특징 추출 및 매칭)

  • Cho, Du-Hyung;Lee, Seok-Lyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.789-794
    • /
    • 2013
  • A vehicle tracking system makes it possible to induce the vehicle movement path for avoiding traffic congestion and to prevent traffic accidents in advance by recognizing traffic flow, monitoring vehicles, and detecting road accidents. To track the vehicles effectively, those which appear in a sequence of video frames need to identified by extracting the features of each object in the frames. Next, the identical vehicles over the continuous frames need to be recognized through the matching among the objects' feature values. In this paper, we identify objects by binarizing the difference image between a target and a referential image, and the labelling technique. As feature values, we use the center coordinate of the minimum bounding rectangle(MBR) of the identified object and the averages of 1D FFT(fast Fourier transform) coefficients with respect to the horizontal and vertical direction of the MBR. A vehicle is tracked in such a way that the pair of objects that have the highest similarity among objects in two continuous images are regarded as an identical object. The experimental result shows that the proposed method outperforms the existing methods that use geometrical features in tracking accuracy.

Efficient Processing using Static Validity Circle for Continuous Skyline Queries (연속적인 스카이라인 질의의 정적 유효 영역을 이용한 효율적인 처리)

  • Li, Zhong-He;Park, Young-Bae
    • Journal of KIISE:Databases
    • /
    • v.33 no.6
    • /
    • pp.631-643
    • /
    • 2006
  • Moving objects in a mobile environment to change their position based on the change of time require a query with their position as a basis. Efficient Regional Decision for Continuous Skyline Queries requires objectively pre-calculating the OSR(Optimal Skyline Region) regardless of the speed and direction of the moving objects. It proposes techniques to reduce the frequency of continuous queries by choosing a VCircle(Validity Circle) as safe location which has radius of the distance to the closest region with position on the moving object at center. But, a VCircle's area varies based on the Moving object's position from first marked time of continuous query. Therefore, the frequency of its continuous query is variable and also when the object moves inside of OSR, query can re-occur frequently In this paper, we suggest a technique of selecting an IVCircle(Interior Validity Circle) in a Skyline Region as the static Safe Region using the characteristics of the OSR. An Interior IVCircle can be calculated in advance when the OSR is decided. Our experiment shows that the frequency of using IVcircle as safe region reduced than that of using VCircle as safe region by 52.55%.