• Title/Summary/Keyword: continuous manufacturing system

Search Result 234, Processing Time 0.028 seconds

A Simplified MES Implementation for Small-sized Manufacturing Industries with EXCEL VBA (EXCEL VBA를 이용한 중소제조업체용 간이형 MES 구축)

  • Park, Jeong-Hyeon;Yoshida, Atsunori
    • IE interfaces
    • /
    • v.22 no.4
    • /
    • pp.302-311
    • /
    • 2009
  • It's very important to make an effective and optimized production schedule for the small-to-medium-sized factory which have high-variety low-volume manufacturing properties. And now people say that MES is very useful to make scheduling more effectively. But for small-to-medium-sized factory, it is very difficult to build MES system because of fewer infrastructures in the factory, and more to keep it's continuous maintenance and improvement. Therefore it is more important to systematize the production scheduling generation using simpler and easier tools like EXCEL sheet. And it will be needed a new method to make simple MES construction for more efficient production scheduling. This paper proposes the method which can build simple MES easily using a tool of EXCEL VBA for a small-to-medium-sized factory, and introduces an applied case by the proposed method and EXCEL VBA.

Development of Mmotor Group Control System for Continuous Process Automation (연속공정 자동화를 위한 전동기 그룹제어시스템의 개발)

  • Cho, Y. J.;Oh, S. R.;Choy, I.;Ahn, H. S.;Kwon, S. H.;Lee, J. S.;Kim, K. B.;Lim, J. H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.218-224
    • /
    • 1990
  • A motor group control system is developed for continuous manufacturing processes such as rolling process or electrolytic tinning process. The control system consists of four subsystems ; Multi-Function Controller (MFC), Flexible Motor Drive (FMD), Bulky Input/Output (BIO), Graphic Console and Simulator (GCS). A graphic control language, called Function Block Language, is used to configure the control algorithms for each subsystem. All subsystem are linked together thru a field bus to communicate data with each other.

  • PDF

Design of Control System for Circular Knitting Machine with Tension Control Capability

  • Yeo, Hee-Joo;Kim, Jae-Won;Kim, Byoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.76.1-76
    • /
    • 2001
  • Up to now, various continuous-processing systems are used in the various industrial applications such as textile machines, iron-manufacturing plants, paper-making machines, printing machines, and so on. In these applications, the tension forced on the products in the control volume can be changed according to the velocity difference between the feeding roll and the delivery roll. Specially, the tension variation generated by the velocity difference, or the inertial effect can decreases the quality of the products in the textile process. In this paper, the tension control problem in a circular knitting machine system is treated to cope these problems. Firstly, the tension relationship in the winding mechanism of general continuous-processing ...

  • PDF

Automated Wafer Separation from the Stacked Array of Solar Cell Silicon Wafers Using Continuous Water Jet

  • Kim, Kyoung-Jin;Kim, Dong-Joo;Kwak, Ho-Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • In response to the industrial needs for automated handling of very thin solar cell wafers, this paper presents the design concept for the individual wafer separation from the stacked wafers by utilizing continuous water jet. The experimental apparatus for automated wafer separation was constructed and it includes the water jet system and the microprocessor controlled wafer stack advancing system. Through a series of tests, the performance of the proposed design is quantified into the success rate of single wafer separation and the rapidity of processing wafer stack. Also, the inclination angle of wafer equipped cartridge and the water jet flowrate are found to be important parameters to be considered for process optimization. The proposed design shows the concept for fast and efficient processing of wafer separation and can be implemented in the automated manufacturing of silicon based solar cell wafers.

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

Internal evaluation of provisional restorations according to the dental CAD/CAM manufacturing method : Three-dimensional superimpositional analysis (치과 CAD/CAM 가공방식에 따른 임시보철물의 내면 적합도 : 3차원 중첩 분석)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Purpose: The purpose of the present study was to compare the internal fit of two different temporary restorations fabricated by dental CAD/CAM system and to evaluate clinical effectiveness. Methods: Composite resin tooth of the maxillary first molar was prepared as occlusal reduction(2.0mm), axial reduction(1mm offset), vertical angle(6 degree) and chamfer margin for a temporary crown and duplicated epoxy die was fabricated. The epoxy dies were used to fabricate provisional restorations by CAD/CAM milling technique or 3D-printing technique. The inner data from all crowns were superimposed on the master die file in the 'best-fit alignment' method using 3D analysis software. Statistical analysis was performed using a Wilcoxon's rank sum test for differences between groups. Results: It showed that the internal RMS(Root Mean Square) values of the additive group were significantly larger than those of other group. No significant differences in internal discrepancies were observed in the temporary crowns among the 2 groups with different manufacturing method. Conclusion: All the groups had the internal fit within the clinical acceptable range (< $50{\mu}m$). The continuous research in the future to be applied clinically for the adaptation of additive manufacturing technique are needed.

A Search for the Factor on Productivity Fluctuation in Korean Manufacturing Industries (우리나라 제조업의 생산성 변동원인 규명)

  • 강규철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.175-187
    • /
    • 1999
  • The notion of productivity has been extended from the quantitative change of input factors to the efficiency change meaning efficient use of resources, and to the technical change meaning the qualitative improvement of input resources. In this way, the technical change is termed as total factor productivity in the individual businesses or the manufacturing industries. They should efficiently respond to the variations of economic environment and at the same time, have to make the efforts to improve productivity by increasing managerial efficiency and rasing the level of technology change for the continuous growth. Considering the growing importance of productivity, this study closely examines the factors influctuation on the productivity, fluctuation using total factor productivity in korean manufacturing industries. For the objective this study investigates the methods of measurement about total factor productivity, establishes the hypotheses based on the preceding research and finding. The results are obtained through the examination on the outcoms of regression analysis and related data. The results can be summarized as follows, First, in the progress of korean industrialization, the qualitative growth does not depend on the total factor productivity of the technical advance, and does not lead to the industry expansion. That is, the contribution of total factor productivity turns out to be relatively low. Second, it is necessary for the manufacturing industry to improve the level of technology and to emphasize the innovation of business, since the capital investment does not completely become fixed in the growth rate of productivity. Finally, continuous R&D investment should be made to increase total factor productivity. Namely, the regulation of industrial structure with an intensive technical development is essential and should be based on scientific and technical knowledge.

  • PDF

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Measurement of the Compressive Force on the Knee Joint Model fabricated by 3D Printing (3D 프린팅으로 제작된 무릎 관절모델의 압축력 측정)

  • Jeong, Hoon Jin;Jee, Min-Hee;Kim, So-Youn;Lee, Seung-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Recent experimental observations support the hypothesis that mechanical stimuli play a role in regulating the specialized molecular expression of articular cartilage in vitro and in vivo. Other studies have demonstrated that the continuous passive motion(CPM)bioreactor for whole joints can provide a platform for possible future in vitro studies and applications, including possible interactions of bio-mechanical and biochemical signals. In this study, we have developed acustom-made bioreactor capable of bending and stretching with circular type motion, and a biomimetic knee joint model, using a 3D printer. This system could be used to investigate the effects of rehabilitative joint motion of dynamic culture.

A Novel Mathematical Modeling in Web Transport Systems considering Thermal and Gravity Effects (열 및 중력 효과를 고려한 웹 이송 시스템의 새로운 수학적 모델링)

  • Kim J.S.;Kim G.Y.;Shin J.M.;Lee J.M.;Choi J.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.333-334
    • /
    • 2006
  • A novel mathematical modeling in web transport systems for Continuous Annealing Processes (CAP) is proposed. Despite of thermal and weight effects in dynamics of web transport systems, the conventional mathematical model does not consider those effects. Disregard of these effects causes the low manufacturing quality of webs in CAP. In order to improve the manufacturing quality of webs in CAP, moreover, precise tension control is required based on the mathematical model. Therefore, an advanced mathematical model considering thermal and weight effects in CAP should be established. The effectiveness of a novel mathematical model is evaluated by comparing the performances of the PI tension control system based on the proposed mathematical model with that based on the conventional one through the computer simulation.

  • PDF