• 제목/요약/키워드: continuous flow-through system

검색결과 138건 처리시간 0.029초

Effect of Dynamic Flow on the Structure of Inhibition Layer in Hot-dip Galvanizing

  • Jin, Young Sool;Kim, Myung Soo;Kim, Su Young;Paik, Doo Jin
    • Corrosion Science and Technology
    • /
    • 제10권1호
    • /
    • pp.30-36
    • /
    • 2011
  • The effect of dynamic flow or forced convection were investigated and compared on the formation of inhibition layer, galvanizing and galvannealing reactions through the hot-dip galvanizing simulator with the oscillation of specimen in zinc bath, continuous galvanizing pilot plant with zinc pumping system through the snout and continuous galvanizing operation with Dynamic $Galvanizing^{TR}$ system. The interfacial Al pick-up was not consistent between the results of simulator, pilot plant and line operation, but the morphology of inhibition layer became compact and refined by the forced convection. The growth of Fe-Zn intermetallics at the interface was inhibited by the forced convection, whereas the galvannealing rate would be a little promoted.

A continuous-flow and on-site mesocosm for ocean acidification experiments on benthic organisms

  • Kim, Ju-Hyoung;Kang, Eun Ju;Kim, Keunyong;Kim, Kwang Young
    • ALGAE
    • /
    • 제33권4호
    • /
    • pp.359-366
    • /
    • 2018
  • Mesocosm experiments conducted for ecological purposes have become increasingly popular because they can provide a holistic understanding of the biological complexities associated with natural systems. This paper describes a new outdoor mesocosm designed for $CO_2$ perturbation experiments of benthos. Manipulated the carbonate chemistry in a continuous flow-through system can be parallelized with diurnal changes, while irradiance, temperature, and nutrients can vary according to the local environment. A target hydrogen ion activity (pH) of seawater was sufficiently stabilized and maintained within 4 h after dilution, which was initiated by the ratio of $CO_2$-saturated seawater to ambient seawater. Specifically, pH and $CO_2$ partial pressure ($pCO_2$) levels gradually varied from 8.05-7.28 and $375-2,691{\mu}atm$, respectively, over a range of dilution ratios. This mesocosm can successfully manipulate the pH and $pCO_2$ of seawater, and it demonstrates suitability for ocean acidification experiments on benthic communities.

Studies on Solvent Sublation of Trace Heavy Metals by Continuous Flow System as Ternary Complexes of 1,10-Phenanthroline and Thiocyanate Ion

  • Kim, Young-Sang;Choi, Yoon-Seok;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1775-1780
    • /
    • 2003
  • A continuous flow system has been developed to determine trace Cu(II), Mn(II), Ni(II) and Zn(II) in a large volume of water samples by a solvent sublation technique. The mixed solution of 1,10-phenanthroline(phen) and thiocyanate ion was used as ligands for the formation of their ternary complexes. The continuous system was constructed in this laboratory with a peristaltic pump, a mini shaker, three mixing bottles and a flotation cell by connecting each part with a polyethylene tube. The flotation conditions such as the flow rate of sample solution and the injection rates of ligand, buffer and surfactant solutions have been investigated to obtain the best sublation efficiencies. Each solution flowed into the flotation cell through each polyethylene tube by the peristaltic pumps. The ternary complexes were floated and extracted into MIBK in a flotation cell of 2 L by bubbling a nitrogen gas. The absorbances of extracted analytes in MIBK were directly measured by graphite furnace-AAS. The concentrations of 1,10-phenanthroline and thiocyanate ion were $2.6\;{\times}\;10^{-3}$ M and $2.3\;{\times}\;10^{-2}$ M in the mixed solution, respectively. The pH of sample solution was adjusted to 5.0 with a buffer solution and 1%(m/v) sodium lauryl sulphate solution was added as a surfactant to support the effective flotation of the complexes. The $N_2$ gas was bubbled at 30 mL/min for 90 minutes for 20 L of sample. Reproducible results of less than 10% RSD and recoveries of 80-120% could be obtained in real samples.

Thermal Analysis on Triple-Passage Heat Exchangers for a Continuous Hot-Steel Tube Cooling System

  • Ko, Bong-Hwan;Park, Seung-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권1호
    • /
    • pp.10-18
    • /
    • 2002
  • The objective of present study is to analyze a concentric triple-passage heat exchanger for an optimal design of a continuous hot steel-tube cooling system, where a hot-steel tube line is passing through an antioxidant gas with a constant speed. Velocities and temperatures of the inert gas flowing between inner and outer tubes are calculated theoretically for laminar and numerically for turbulent flow regimes. From their profiles Nusselt numbers and friction factors are calculated (or various ratios of inner/outer tube radii and relative velocities. With these Nusselt numbers triple-passage heat exchangers are investigated for their thermal characteristics. It is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since local heat transfer coefficients for flows through an annulus are dependent on local wall heat flux ratios.

Immobilized Luminescent Cell - based Flow Through Monitoring of Environmental Pollutants

  • Britz, Margaret L.;Simonov, Nina;Chun, Uck-Han
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.250-257
    • /
    • 1997
  • A new sensing system based on the immobilization of luminescent bacteria, photobacterium phosphoreum, was proposed for continuous real-time monitoring of pollutants. The response curves demonstrate that Photobacterium phosphoreum immobilized on the strontium alginate were very sensitive to seven reference chemicals used. The significant inhibitory concentrations for bioluminescence emission were 5 ppm for Pb$(NO_3)_2$), $NiCl_2$, $CdCl_2$, 50 ppm for $NaASO_2$, 0.1 ppm for $HgCl_2$, 0.5 ppm for pentachlorophenol and less than 5 ppm for SDS, respectively. The alginate mixed-cells (AMC) retained their luminescence during experimental period (29 days) under storage condition of $-80^{\circ}C$. The variables affecting performance of continuous flow through monitoring (CFTM) was optimized in order to ensure stability and efficiency. The flow through cell with strontium-alginate immobilized luminescent bacteria was tested with salicylate and 4-nitrophenol. A rapid response of luminescence was recorded by time drive mode in bioluminescence spectrometer after exposure to both toxicants.

  • PDF

용해기체 분석용 기체감응막 이온선택성 전극 (제 4 보) 관형 PVC막 pH전극을 이용한 황화이온의 연속 · 자동화 정량 (Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (Ⅳ). Continuous-Automated Determination of Sulfide Ion Using Tubular PVC Membrane Type pH Electrode)

  • 이흥락;배준웅;오상협
    • 대한화학회지
    • /
    • 제36권5호
    • /
    • pp.638-643
    • /
    • 1992
  • 황화이온검출기로서 2가지 형태의 연속 flow-through 전극계의 분석적 감응성질을 조사하고, 최적조건에서 그들의 감응특성을 직접 비교하였다. 두 검출계에 있어서 측정한 봉우리전위를 황화이온농도의 대수값과 관련지웠으며, 적어도 시간당 20개의 시료를 정량할 수 있었다. pH전극법에서는 투석기를 지나 흘러가는 recipient stream의 pH를 측정하였다. 장치는 연속흐름형의 기체투석기가 관형 polymer 막전극과 연결되도록 설계되어 있다. 이 방법의 최적실험조건은 recipient $5.0 {\times} 10^{-5} M NaOH + 5.0 {\times} 10^{-3} M$ NaCl과 diluent 0.10M $H_2SO_4$이며, recipient stream, diluent stream 및 시료의 유속은 모두 1.0ml/min이다. 황화이온 전극법에서는 시판하는 황화이온선택성 전극을 flow-through cell 속의 황화이온을 검출하는 데에 썼다. 이 방법의 최적실험조건인 황화이온 산화방지 완충제(1.0M NaOH 용액에 3.5g 아스코르브산과 7.6g $Na_2EDTA$를 용해)와 시료의 유속은 각각 1.4 ml/min와 1.0 ml/min이다.

  • PDF

갈대-상(床)을 이용한 쓰레기 매립지 침출수의 생물학적 연속흐름 처리 (Biological Treatment of Processed-Leachate from Landfills by Reed (Phragmites australis)-Bed in a Continuous Flow System)

  • 김인성;조용주;최홍근;이은주
    • The Korean Journal of Ecology
    • /
    • 제27권6호
    • /
    • pp.375-381
    • /
    • 2004
  • 본 연구는 수도권 매립지에서의 침출수 처리 방류수와 같은 특수한 수질 내에서 우수한 생장의 갈대(Phragmites australis)를 선별하여 침출수 처리 방류수의 자연정화 방법 및 처리 효율을 확인하기 위해 실시하였다. 침출수 처리 방류수에 대한 우수 갈대의 선발을 위해 13개의 갈대 서식지로부터 수집한 갈대를 침출수 처리 방류수에서 배양하며 영양염류 제거, 생태-생리학적인 반응 및 생장율 등을 조사하여 선별하였다. 본 실험에서는 침출수 처리 방류수 내에서 우수한 생장을 나타낸 갈대와 자연계에서 분리한 도우미 미생물(효모, 유산균 및 광합성 세균 등)을 조합한 갈대-상(床; reed-bed)에 침출수 처리 방류수를 연속적으로 공급하면서 체류 시간 및 식재 밀도 차이에 따른 침출수 처리 방류수의 수질 정화 효율을 확인하였다. 침출수 처리 방류수를 공급하며 약 5주 후에 갈대-상을 통과한 배출수 수질을 분석한 결과, 색도(chromaticity)는 약 $29.5{\sim}36.9\%$. 총질소(T-N)는 약 $49.4{\sim}67.2\%$, 총인(T-P)은 약 $42.1{\sim}94.6\%$, 생물화학적 산소요구량($BOD_5$)은 약 $74.5{\sim}88.8\%$, 화학적 산소요구량($COD_{Mn}$)은 약 $15.6{\sim}20.8\%$, 총 고형물질(TDS)은 약 $17.5{\sim}35.4\%$ 그리고 염도(salinity)는 약 $15.3{\sim}34.7\%$ 등으로 감소되었다. 또한 체류시간은 생물화학적 산소요구량을 감소시키고 질소 및 인의 제거에 영향을 주었고 식재밀도는 인의 제거에 영향을 주었다. 이러한 결과로 갈대-상을 통해 처리된 생물학적 처리 배출수의 수질이 침출수 처리 방류수의 수질에 비해 향상되었음을 확인하였다.

대학병원 급식업무 개선 사례 연구 (Case Study on Job Flow Improvement of Foodservice at a University Hospital)

  • 김형미;양일선;박은철;임현숙
    • 한국의료질향상학회지
    • /
    • 제7권2호
    • /
    • pp.244-261
    • /
    • 2000
  • Background : In order to cope with changes in the management environment at hospitals, increased interests are drawn in patient foodservice system on Continuous Quality Improvement Activity as the method of approaching a quality food service and effective management. Thus, as a part of this activity, this study was conducted to evaluate job flow improvement that was already performed and the results of that process at the dietetic department of a university hospital, focusing on improving management. Method : On February 15 of 1998. the dietetic department formed a job flow-improvement to decide on the priority of job flow improvement, and prepared specific action strategies and schedule of the priority: after a 5 month process period, job improvement achieved on June 15. 1998. Also, economic achievement of the task was evaluated through labor productivity analysis and cost-benefit analysis. Results : The patient food service system which was managed decentralized at the present hospital was centralized, some steps of the food service process were integrated, and quality of patient food was improved. Also, as a solution of the problems expected when conducting job flow improvement was made on food service equipments and utensils. The result of evaluating the job flow improvement that labor productivity improved by 18.2% compared to before the improvement and the result of the analysis of cost-benefit showed that Benefit-Cost (B/C) ratio was 2.22. showing financial merit on the investment. Conclusions : Continuous Quality Improvement Activity needs to be initiated and conducted in the future in various areas of hospital foodservice system in order to actively adopt to ever changing hospital management environment. In order to achieve this goal, many researches and more efforts need to be put in by people in charge of hospital food service management, and interests and support are needed from hospital policy makers.

  • PDF

OMACON형 LM-MHD 시스템에서의 에너지전환특성 시뮬레이션 (Simulation of Energy Conversion Characteristics of OMACON LM-MHD Systems)

  • 김창녕
    • 한국시뮬레이션학회논문지
    • /
    • 제6권2호
    • /
    • pp.1-14
    • /
    • 1997
  • The characteristics of the flow and energy conversion in OMACON liquid-metal MHD system are investigated. Numerical simulation of two-phase flow in the OMACON system without magnetic field was carried out by the Phoenics code and the energy conversion characteristics are studied in association with the fact that the mechanical energy loss at the nozzle of the OMACON system are to be converted into electrical energy. In this system, working fluid (gas) is injected through the mixer located at the bottom of the riser, and is mixed with hot liquid metal. Therefore in the riser two-phase flow is developed under the influence of the gravity. In this study, the interaction between the gas and liquid is considered by the use of IPSA(InterPhase Slip Algorithm) where standard drag coefficient has been used. It has been assumed that in the flow regime the liquid is continuous and the gas is dispersed. For the liquid and gas, the continuity equations, momentum equations and energy equations are solved respectively in association with void fraction in the flow field. In order to calculate the energy conversion efficiency, firstly the ratio of the mechanical energy loss of liquid metal flow at the nozzle to the input thermal energy is considered. Secondly flow pattern of liquid metal in the generator has been analyzed, and the characteristics of the conversion of the mechanical energy into the electrical energy has been investigated. For an representative case where Hartmann number is 540 and magnetic field is 0.35 T, the present analysis shows that the energy conversion efficiency is 0.653. This result is considered to be reasonable in comparison with published experimental results.

  • PDF

Application Consideration of Machine Learning Techniques in Satellite Systems

  • Jin-keun Hong
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.48-60
    • /
    • 2024
  • With the exponential growth of satellite data utilization, machine learning has become pivotal in enhancing innovation and cybersecurity in satellite systems. This paper investigates the role of machine learning techniques in identifying and mitigating vulnerabilities and code smells within satellite software. We explore satellite system architecture and survey applications like vulnerability analysis, source code refactoring, and security flaw detection, emphasizing feature extraction methodologies such as Abstract Syntax Trees (AST) and Control Flow Graphs (CFG). We present practical examples of feature extraction and training models using machine learning techniques like Random Forests, Support Vector Machines, and Gradient Boosting. Additionally, we review open-access satellite datasets and address prevalent code smells through systematic refactoring solutions. By integrating continuous code review and refactoring into satellite software development, this research aims to improve maintainability, scalability, and cybersecurity, providing novel insights for the advancement of satellite software development and security. The value of this paper lies in its focus on addressing the identification of vulnerabilities and resolution of code smells in satellite software. In terms of the authors' contributions, we detail methods for applying machine learning to identify potential vulnerabilities and code smells in satellite software. Furthermore, the study presents techniques for feature extraction and model training, utilizing Abstract Syntax Trees (AST) and Control Flow Graphs (CFG) to extract relevant features for machine learning training. Regarding the results, we discuss the analysis of vulnerabilities, the identification of code smells, maintenance, and security enhancement through practical examples. This underscores the significant improvement in the maintainability and scalability of satellite software through continuous code review and refactoring.