• Title/Summary/Keyword: continuous deposition

Search Result 188, Processing Time 0.033 seconds

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1149-1153
    • /
    • 2002
  • CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Influence of Deposition Parameters on Film Hardness for Newly Synthesized BON Thin Film by Low Frequency R.F. PEMOCVD

  • G.C. Chen;J.-H. Boo;Kim, Y.J.;J.G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.73-73
    • /
    • 2001
  • Boron-containing materials have several excellent properties, such as superlnardness, insulation and non-Rinear optical property. Recently, oxynitride compounds, such as Si(ON), Ti(ON), became the promising materials applied in diffusion barrier layer and solar cell. With the expectation of obtaining the hybrid property, we have firstly grown the BON thin film by radio frequency (R.F.) plasma enhanced metalorganic chemical vapm deposition (PEMOCVD) with 100 kHz frequency and trimethyl borate precursor. The plasma source gases used in this study were Ar and $H_2$, and two kinds of nhmgen source gases, $N_2$ and <$NH_3$, were also employed. The as-grown films were characterized by XPS, IR, SEM and Knoop microlhardness tester. The relationship between the films hardness and the growth rate indicated that the hardness of the film was dependent on several factors such as nitrogen source gas, substrate temperature and film thickness due to the variation of the composition and the structure of the film. Both nitrogen and carbon content could raise the film hardness, on which nitrogen content did stronger effect than carbon. The smooth morphology and continuous structure was benefit of obtaining high hardness. The maximum hardness of BON film was about 10 GPa.

  • PDF

Real-time Observation of Evolution Dynamics of Ge Nanostructures on Si Surfaces by Photoelectron Emission Microscopy (자외선 광여기 전자현미경을 이용한 Si 표면 위에 Ge 나노구조의 성장 동역학에 관한 실시간 연구)

  • Cho, W.S.;Yang, W.C.;Himmerlich, M.;Nemanich, R.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.145-152
    • /
    • 2007
  • The evolution dynamics of nanoscale Ge islands on both Si (001) and (113) surfaces is explored using ultraviolet photoelectron emission microscopy (UV-PEEM). Real-time monitoring of the in-situ growth of the Ge island structures can allow us to study the variation of the size, the shape and the density of the nanostructures. For Ge depositions greater than ${\sim}4$ monolayer (ML) with a growth rate of ${\sim}0.4\;ML/min$ at temperatures of $450-550^{\circ}C$, we observed island nucleation on both surfaces indicating the transition from strained layer to island structure. During continuous deposition the circular islands grew larger via ripening processes. AFM measurements showed that the islands grown on Si (001) were dome-shaped while the islands on Si (113) were multiple-side faceted with flat tops of (113)-orientation. In contrast, for Ge deposition with a lower growth rate of ${\sim}0.15\;ML/min$ on Si(113), we observed the shape transition from circular into elongated island structures. The elongated islands grew longer along the [$33\bar{2}$] during continuous Ge deposition. The shape evolution of the islands is discussed in terms of strain relaxation and kinetic effects.

The Role of Magnesium and Calcium in Eggshell Formation in Tsaiya Ducks and Leghorn Hens

  • Shen, T.F.;Chen, W.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.290-296
    • /
    • 2003
  • Tsaiya ducks and Leghorn hens are the two major laying birds raised in Taiwan. They are all excellent egg layers. Tsaiya ducks are small in body size (1.3 kg) with bigger egg weight (65 g) and stronger eggshell breaking strength than eggs from hens. The eggshell consists mainly of calcium carbonate, hence calcium plays an important role in the eggshell formation. Magnesium is also present in eggshell in small amounts, which may have effect on maintaining eggshell quality. In comparison studies, it was shown that the duck eggshells contained higher calcium and lower magnesium content than chicken eggshells. The eggshell magnesium content was not affected by the dietary magnesium levels (690-2380 ppm) in ducks, but in hens, it increased linearly with dietary magnesium levels. The palisade layer ($5000{\times}$) of the eggshell was found to have a compact form for ducks while there are many hallow vesicles in chicken eggshells. The eggshell magnesium deposition model is different for ducks and hens with ducks having a one-peak and hens having a two-peak model. The calcium deposition model is similar for both birds. Both the carbonic anhydrase specific activity and total activity in the shell gland mucosa of ducks are higher than those in hens. Ducks retain higher magnesium and lower calcium in the shell gland mucosa and secret less magnesium and more calcium into the shell gland lumen for eggshell deposition. The ATPase specific activity is maintained fairly constant during the eggshell forming stage, indicating continuous calcium transport into the shell gland lumen for eggshell formation. The magnesium content in duck eggshells is much lower than that in hens indicating that the magnesium content in the eggshell may have an effect on eggshell quality.

Synthesis and characterization of amorphous NiWO4 nanostructures

  • Nagaraju, Goli;Cha, Sung Min;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.392.1-392.1
    • /
    • 2016
  • Nowadays, research interest in developing the wearable devices are growing remarkably. Portable consumer electronic systems are becoming lightweight, flexible and even wearable. In fact, wearable electronics require energy storage device with thin, foldable, stretchable and conformable properties. Accordingly, developing the flexible energy storage devices with desirable abilities has become the main focus of research area. Among various energy storage devices, supercapacitors have been considered as an attractive next generation energy storage device owing to their advantageous properties of high power density, rapid charge-discharge rate, long-cycle life and high safety. The energy being stored in pseudocapacitors is relatively higher compared to the electrochemical double-layer capacitors, which is due to the continuous redox reactions generated in the electrode materials of pseudocapacitors. Generally, transition metal oxides/hydroxide (such as $Co_3O_4$, $Ni(OH)_2$, $NiFe_2O_4$, $MnO_2$, $CoWO_4$, $NiWO_4$, etc.) with controlled nanostructures (NSs) are used as electrode materials to improve energy storage properties in pseudocapacitors. Therefore, different growth methods have been used to synthesize these NSs. Of various growth methods, electrochemical deposition is considered to be a simple and low-cost method to facilely integrate the various NSs on conductive electrodes. Herein, we synthesized amorphous $NiWO_4$ NSs on cost-effective conductive textiles by a facile electrochemical deposition. The as-grown amorphous $NiWO_4$ NSs served as a flexible and efficient electrode for energy storage applications.

  • PDF

Effect of Injection Stage of SF6 Gas Incorporation on the Limitation of Carbon Coils Geometries (육불화황 기체의 주입단계에 따른 탄소코일 기하구조의 제약)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.374-380
    • /
    • 2011
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils according to the injection stage of $SF_6$ gas incorporation were investigated. A continuous injecting of $SF_6$ gas flow could give rise to many types of carbon coils-related geometries, namely linear tub, micro-sized coil, nano-sized coil, and wave-like nano-sized coil. However, the limitation of the geometry as the nano-sized geometries of carbon coils could be achieved by the incorporation of $SF_6$ in a short time (1 min) during the initial deposition stage. A delayed injection of a short time $SF_6$ gas flow can deteriorate the limitation of the geometries. It confirms that the injection time and its starting point of $SF_6$ gas flow would be very important to determine the geometries of carbon coils.

Plasma pretreatment of the titanium nitride substrate fur metal organic chemical vapor deposition of copper (Cu-MOCVD를 위한 TiN기판의 플라즈마 전처리)

  • Lee, Chong-Mu;Lim, Jong-Min;Park, Woong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.361-366
    • /
    • 2001
  • It is difficult to obtain high Cu nucleation density and continuous Cu films in Cu-MOCVD without cleaning the TiN substrate prior to Cu deposition. In this study effects of plasma precleaning on the Cu nucleation density were investigated using SEM, XPS, AES, AFM analyses. Direct plasma pretreatment is much more effective than remote plasma pretreatment in enhancing Cu nucleation. Cleaning effects are enhanced with increasing the rf-power and the plasma exposure time in hydrogen plasma pretreatment. The mechanism through which Cu nucleation is enhanced by plasma pretreatment is as follows: Hydrogen ion\ulcorner in the hydrogen plasma react with TiN to form Ti and $NH_3$ Cu nucleation is easier on the Ti substrate than TiN substrate.

  • PDF

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

Deposition of IBAD-MgO for superconducting coated conductor (초전도 박막선재용 IBAD-MgO 박막 증착)

  • Ha, Hong-Soo;Kim, Hyo-Kyum;Yang, Ju-Saeng;Ko, Rock-Kil;Kim, Ho-Sup;Oh, Sang-Soo;Song, Kyu-Jeong;Park, Chan;Yoo, Sang-Im;Joo, Jin-Ho;Moon, Seong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.282-283
    • /
    • 2005
  • Ion beam assisted deposition(IBAD) technique was used to produce biaxially textured polycrystalline MgO thin films for high critical current YBCO coated conductor. Hastelloy tapes were continuous electropolished with very smooth surface for IBAD-MgO deposition, RMS roughness of Hastelloy tape values below 2 nm and local slope of less than $1^{\circ}$. After the polishing of the tape an amorphous $Y_2O_3$ and $Al_2O_3$ are deposited Biaxially textured MgO was deposited on amorphous layer bye-beam evaporation with a simultaneous bombardment of high energy ions. We had developed the RHEED to measure in-situ biaxial texture of film surface as thin as tens angstrom. And also ex-situ characterization of buffer layers was studied using XRD and SEM. The full-width at half maximum(FWHM) out of plane texture of IBAD-MgO template is $4^{\circ}$.

  • PDF