Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.5.374

Effect of Injection Stage of SF6 Gas Incorporation on the Limitation of Carbon Coils Geometries  

Kim, Sung-Hoon (Department of Engineering in Energy & Applied Chemistry, Silla University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.5, 2011 , pp. 374-380 More about this Journal
Abstract
Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils according to the injection stage of $SF_6$ gas incorporation were investigated. A continuous injecting of $SF_6$ gas flow could give rise to many types of carbon coils-related geometries, namely linear tub, micro-sized coil, nano-sized coil, and wave-like nano-sized coil. However, the limitation of the geometry as the nano-sized geometries of carbon coils could be achieved by the incorporation of $SF_6$ in a short time (1 min) during the initial deposition stage. A delayed injection of a short time $SF_6$ gas flow can deteriorate the limitation of the geometries. It confirms that the injection time and its starting point of $SF_6$ gas flow would be very important to determine the geometries of carbon coils.
Keywords
Carbon coil; $SF_6$; Geometry; Injection stage; Thermal chemical vapor deposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).   DOI
2 V. Ivanov, J. B. Nagy, Ph. Lambin, A. A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, and J. Vanlanduyt, Chem. Phys. Lett. 223, 329 (1994).   DOI   ScienceOn
3 M. Lu, H. L. Li, and K. T. J. Lau, Phys. Chem. B 108, 6186 (2004).   DOI
4 C. J. Su, D. W. Hwang, S. H. Lin, B. Y. Jin, and L. P. Hwang, Phys. Chem. Commun. 5, 34 (2002).
5 S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, 5049 (1995).   DOI
6 X. Chen and S. Motojima, J. Mater. Sci. 34, 5519 (1999).   DOI
7 S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, Carbon 34, 289 (1996).   DOI
8 W. R. Davies, R. J. Slawson, and G. R. Rigby, Nature 171, 756 (1953).
9 R. T. K. Baker, Carbon 27, 315 (1989).   DOI
10 L. J. Pan, T. Hayashida, M. Zhang, and Y. Nakayama, Jpn. J. Appl. Phys. 40, L235 (2001).   DOI   ScienceOn
11 S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, Science 265, 635 (1994).   DOI   ScienceOn
12 A. Fonseca, K. Hernadi, J. B. Nagy, Ph. Lambin, and A. Lucas, Carbon 33, 1759 (1995).   DOI
13 Y. Song and S. J. Kang, J. Korean Vacuum Soc. 18, 488 (2009).   DOI
14 S. Ihara and S. Itoh, Carbon 33, 931 (1995).   DOI
15 K. Akagi, R. Tamura, and M. Tsukada, Phys. Rev. Lett. 74, 2307 (1995).   DOI
16 K. D. Kim and S. H. Kim, J. Korean Vacuum Soc. 18, 481 (2009).   DOI
17 A. Volodin, D. Buntinx, M. A. Ahlskog, A. Fonseca, J. B. Nagy, and C. V. Haesendonck, Nano Lett. 4. 1775 (2004).   DOI
18 A. Szabo, A. Fonseca, J. B. Nagy, Ph. Lambin, and L.P. Biro, Carbon 43, 1628 (2005).   DOI