• Title/Summary/Keyword: continuous deposition

Search Result 186, Processing Time 0.021 seconds

Application of Pulsed Chemical Vapor Deposited Tungsten Thin Film as a Nucleation Layer for Ultrahigh Aspect Ratio Tungsten-Plug Fill Process

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.486-492
    • /
    • 2016
  • Tungsten (W) thin film was deposited at $400^{\circ}C$ using pulsed chemical vapor deposition (pulsed CVD); film was then evaluated as a nucleation layer for W-plug deposition at the contact, with an ultrahigh aspect ratio of about 14~15 (top opening diameter: 240~250 nm, bottom diameter: 98~100 nm) for dynamic random access memory. The deposition stage of pulsed CVD has four steps resulting in one deposition cycle: (1) Reaction of $WF_6$ with $SiH_4$. (2) Inert gas purge. (3) $SiH_4$ exposure without $WF_6$ supply. (4) Inert gas purge while conventional CVD consists of the continuous reaction of $WF_6$ and $SiH_4$. The pulsed CVD-W film showed better conformality at contacts compared to that of conventional CVD-W nucleation layer. It was found that resistivities of films deposited by pulsed CVD were closely related with the phases formed and with the microstructure, as characterized by the grain size. A lower contact resistance was obtained by using pulsed CVD-W film as a nucleation layer compared to that of the conventional CVD-W nucleation layer, even though the former has a higher resistivity (${\sim}100{\mu}{\Omega}-cm$) than that of the latter (${\sim}25{\mu}{\Omega}-cm$). The plan-view scanning electron microscopy images after focused ion beam milling showed that the lower contact resistance of the pulsed CVD-W based W-plug fill scheme was mainly due to its better plug filling capability.

Development of Spray Thin Film Coating Method using an Air Pressure and Electrostatic Force (공압과 정전기력을 이용한 스프레이 박막 코팅 기술 개발)

  • Kim, Jung Su;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.567-572
    • /
    • 2013
  • In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

Preparation of Crack-free ZIF-7 Thin Films by Electrospray Deposition (정전분무법에 의한 결함없는 ZIF-7 박막의 제조)

  • Melgar, Victor Manuel Aceituno;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.278-282
    • /
    • 2013
  • Zeolitic imidazolate frameworks (ZIFs) have been the focus of interest for their physical and chemical properties, especially, for their extraordinary gas separation properties. In this study, a novel and efficient method for the fabrication of continuous ZIF-7 film on ${\alpha}$-alumina substrate has been investigated. The electrospray deposition method was tried for the first time to prepare ZIF films directly without the necessity of prior substrate seeding. It has the advantage of depositing thin ZIF-7 films directly on the ${\alpha}$-alumina substrate by electrospraying the precursor solution. The ZIF-7 films have been characterized through XRD, FE-SEM, and single gas permeation tests.

Electrolytic Synthesis of Cobalt Nanorods without Using a Supporting Template (템플릿 없이 전해 합성된 코발트 나노 로드)

  • Kim, Seong-Jun;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.319-325
    • /
    • 2014
  • Cobalt nano-rods were fabricated using a template-free electrochemical-deposition process. The structure of cobalt electro-deposits strongly depends on the electrolyte composition and on the density of the applied current. In particular, as the content of boric acid increased in the electrolyte, deposits of semi-spherical nuclei formed, and then grew into one-dimensional nano-rods. From analysis of the electro-deposits created under the conditions of continuous and pulsed current, it is suggested that the distribution of the active species around the electrode/electrolyte interface, and their transport, might be an important factor affecting the shape of the deposits. When transport of the active species was suppressed by lowering the deposition temperature, more of the well-defined nano-rod structures were obtained. The optimal conditions for the preparation of well-defined nano-rods were determined by observing the morphologies resulting from different deposition conditions. The maximum height of the cobalt nano-rods created in this work was $1{\mu}m$ and it had a diameter of 200 nm. Structural analysis proved that the nano-rods have preferred orientations of (111).

Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene

  • Cho, Hyunjin;Lee, Changhyup;Oh, In Seoup;Park, Sungchan;Kim, Hwan Chul;Kim, Myung Jong
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • Methanol as a carbon source in chemical vapor deposition (CVD) graphene has an advantage over methane and hydrogen in that we can avoid optimizing an etching reagent condition. Since methanol itself can easily decompose into hydrocarbon and water (an etching reagent) at high temperatures [1], the pressure and the temperature of methanol are the only parameters we have to handle. In this study, synthetic conditions for highly crystalline and large area graphene have been optimized by adjusting pressure and temperature; the effect of each parameter was analyzed systematically by Raman, scanning electron microscope, transmission electron microscope, atomic force microscope, four-point-probe measurement, and UV-Vis. Defect density of graphene, represented by D/G ratio in Raman, decreased with increasing temperature and decreasing pressure; it negatively affected electrical conductivity. From our process and various analyses, methanol CVD growth for graphene has been found to be a safe, cheap, easy, and simple method to produce high quality, large area, and continuous graphene films.

Effect of cement dust on soil physico-chemical properties around cement plants in Jaintia Hills, Meghalaya

  • Lamare, R. Eugene;Singh, O.P.
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.409-417
    • /
    • 2020
  • Investigation was carried out to assess the effect of cement dust deposition on the physico-chemical properties of soil near some cement plants in Jaintia Hills, Meghalaya. Soil samples were collected and analysed and compared with the control site. Comparison of various soil physico-chemical parameters revealed that cement dust emanating from cement plants has changed the soil quality in the surrounding areas of cement plants. The normal soil pH in the area is generally acidic. However, due to the continuous deposition of cement dust soil pH was found slightly alkaline near the cement plants. The higher values of soil parameters such as electrical conductivity and bulk density were also noticed near the cement plants. However, lower values of water holding capacity, soil moisture content, soil organic carbon and total nitrogen content were found compared to the control sites. The effect of cement dust deposition on soil is more in areas nearer to the cement plants. At present the changes may not be so serious but if this trend continues, soil properties of a vast area around the cement plants are likely to change leading to multiple effects on flora, fauna and socio-economy of the area.

Fabrication of SiCf/SiC Composites using an Electrophoretic Deposition

  • Lee, Jong-Hyun;Gil, Gun-Young;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.447-451
    • /
    • 2009
  • Continuous SiC fiber-reinforced SiC composites ($SiC_f$/SiC) were fabricated by electrophoretic deposition (EPD). Nine types of slurries with different powder contents, binder resin amounts and slurry pH were deposited on Tyranno$^{TM}$-SA fabrics by EPD at 135 V for ten minutes to determine the optimal conditions. Further EPD using the optimum slurry conditions was performed on fabrics with four different pyrolitic carbon (PyC) thicknesses. The density of the hot-pressed composites decreased with increasing PyC thickness due to the difficulty of infiltrating the slurry into the narrow gaps between the fibers. On the other hand, the mechanical strength increased with increasing PyC thickness despite the decrease in density, which was explained by the enhanced crack deflection with increasing PyC thickness. The $SiC_f$/SiC composites showed the highest density and flexural strength of 94% and 342 MPa, respectively, showing EPD as a feasible method for dense $SiC_f$/SiC fabrication.

The deposition characteristics of the diamond films deposited on Si, Inconel 600 and steel by microwave plasma CVD method (마이크로파 플라즈마 CVD 방법으로 Si, Inconel 600 및 Steel 모재위에 증착된 다이아몬드 박막의 증착특성)

  • 김현호;김흥회;이원종
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.133-141
    • /
    • 1995
  • The deposition characteristics of diamond films were investigated for three different substrates : Si, Inconel 600 and steel. Diamond films were prepared by microwave plasma CVD method using $CH_4$, $H_2$ and $O_2$ as reaction gases. The deposited films were analyzed with SEM, Raman spectroscopy and ellipsometer. For Si substrate, diamond films were successfully obtained for most of the deposition conditions used in this study. As the $CH_4$ flow rate decreased and the $O_2$ flow rate increased, the quality of the film was improved due to the reduced non-diamond phase in the film. For Inconel 600 substrate, the surface pretreatment with diamond powders was required to deposit a continuous diamond film. The films deposited at temperatures of $600^{\circ}C$ and $700^{\circ}C$ had mainly diamond phase, but they were peeled off locally due to the difference in the thermal expansion coefficient between the substrate and the deposited films. The films deposited at $500^{\circ}C$ and $850^{\circ}C$ had only the graphitic carbon phase. For steel substrate, all of the films deposited had only the graphitie carbon phase. We speculated that the formation of diamond nuclei on the steel substrate was inhibited due to the diffusion of carbon atoms into the steel substrate which has a large amount of carbon solubility.

  • PDF

A Study on Fabrication of 3D Hydroxyapatite Scaffolds Using a Laser Sintering Deposition System (레이저 소결 적층 시스템을 이용한 3차원 수산화인회석 인공지지체 제작에 관한 연구)

  • Choi, Seung-Hyeok;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • Calcium-phosphate-based bioceramics are promising biomaterials for scaffolds because they can assist in bone regeneration. In this study, a laser sintering deposition system was developed, and 3D hydroxyapatite (HA) scaffolds were fabricated. The main process conditions of the HA scaffolds were laser power, table velocity, and laser focal distance. As the laser power increased, the line width, line height, and layer thickness also increased. Further, the line width, line height, and layer thickness decreased as the table velocity increased. As the laser focal distance increased, the line width increased, but the line height and layer thickness decreased. The fabricated green scaffolds were sintered at 1050 ℃ and 1150 ℃. The sintered scaffolds had a uniform and continuous interconnected shape, with pore sizes ranging from 850 to 950 ㎛ having 53% porosity. The compressive strength of the scaffolds decreased from 0.72 MPa (1050 ℃) to 0.53 MPa (1150 ℃). The biocompatibility of the scaffolds was investigated by analyzing the adhesion of osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The results indicate that the scaffold sintered at 1050 ℃ had good mechanical and biological properties compared to that at 1150 ℃.

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.