Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.9.486

Application of Pulsed Chemical Vapor Deposited Tungsten Thin Film as a Nucleation Layer for Ultrahigh Aspect Ratio Tungsten-Plug Fill Process  

Jang, Byeonghyeon (School of Materials Science and Engineering, Yeungnam University)
Kim, Soo-Hyun (School of Materials Science and Engineering, Yeungnam University)
Publication Information
Korean Journal of Materials Research / v.26, no.9, 2016 , pp. 486-492 More about this Journal
Abstract
Tungsten (W) thin film was deposited at $400^{\circ}C$ using pulsed chemical vapor deposition (pulsed CVD); film was then evaluated as a nucleation layer for W-plug deposition at the contact, with an ultrahigh aspect ratio of about 14~15 (top opening diameter: 240~250 nm, bottom diameter: 98~100 nm) for dynamic random access memory. The deposition stage of pulsed CVD has four steps resulting in one deposition cycle: (1) Reaction of $WF_6$ with $SiH_4$. (2) Inert gas purge. (3) $SiH_4$ exposure without $WF_6$ supply. (4) Inert gas purge while conventional CVD consists of the continuous reaction of $WF_6$ and $SiH_4$. The pulsed CVD-W film showed better conformality at contacts compared to that of conventional CVD-W nucleation layer. It was found that resistivities of films deposited by pulsed CVD were closely related with the phases formed and with the microstructure, as characterized by the grain size. A lower contact resistance was obtained by using pulsed CVD-W film as a nucleation layer compared to that of the conventional CVD-W nucleation layer, even though the former has a higher resistivity (${\sim}100{\mu}{\Omega}-cm$) than that of the latter (${\sim}25{\mu}{\Omega}-cm$). The plan-view scanning electron microscopy images after focused ion beam milling showed that the lower contact resistance of the pulsed CVD-W based W-plug fill scheme was mainly due to its better plug filling capability.
Keywords
tungsten(W); pulsed chemical vapor deposition; W-plug; nucleation layer; contact resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. E. J. Schmitz, Chemical vapor deposition of tungsten and tungsten silicide, Noyes, Park Ridge, New Jersey (1992).
2 E. K. Broadbent and C. L. Ramiller, J. Electrochem. Soc., 131, 1427 (1984).   DOI
3 C. M. McConica and K. Krishnamani, J. Electrochem. Soc., 133, 2542 (1986).   DOI
4 E. J. McInerney, T. W. Mountsier, B. L. Chin and E. K. Broadbent, J. Vac. Sci. Technol., B11, 734 (1993).
5 S. B. Herner, S. A. Desai, A. Nak, and S. G. Ghanayem, Electrochem. Solid-State Lett., 2, 398 (1999).   DOI
6 M. A. Nicolet, Appl. Surf. Sci., 91, 269 (1995).   DOI
7 T. Omstead, G. Chris D’Couto, S.-H. Lee, P. Wongsenkaum, J. Collins and K Levy, Solid State Technol., 51, 45 (2002).
8 International Technology Roadmap for Semiconductors (ITRS), 2011 Edition, Interconnect Summary.
9 T. Suntola, Handbook of Crystal Growth, edited by D. T. J. Hurle, (Elsevier Science B. V., 1994), Vol. 3, Chapter 14.
10 J. W. Klaus, S. J. Ferro and S. M. George, Thin Solid Films, 360, 145 (2000).   DOI
11 S.-H. Lee, L. Gonzalez, J. Collins, K. Ashitani and K. Levy, Conference Proceedings ULSI XVII, 649 Materials Research Society (2002).
12 K. Okubo, H. Ishizuka, K. Suzuki, K. Sato and M. Tachibana, Conference Proceedings ULSI XVII, 661 Materials Research Society (2002).
13 M. Yang, H. Chung, A. Yoon, H. Fang, A. Zhang, C. Knepfler, R. Jackson, J. S. Byun, A. Mak, M. Eizenberg, M. Xi, M. Kori and A. K. Sinha, Conference Proceedings ULSI XVI, 655 Materials Research Society (2002).
14 S.-H. Kim, E.-S. Hwang, S.-Y. Han, I.-H. Lee, S.-H. Pyi, N.-J. Kwak, H. Sohn and J. Kim, Electrochem. Solid-State Lett., 7, G195 (2004).   DOI
15 S.-H. Kim, E.-S. Hwang, S-C. Ha, S.-H. Pyi, H.-J. Sun, J.-W. Lee, N. Kawk, J.-K. Kim, H. Sohn and J. Kim, J. Electrochem. Soc., 152. C408 (2005).   DOI
16 P. M. Petroff, A. K. Sinha, T. T. sheng, H. J. Levinstein and F. B. Alexander, J. Appl. Phys., 44, 2545 (1973).   DOI
17 Y. Tanaka, E. Kim, J. Forster and Z. Xu, J. Vac. Sci. Technol., B17, 416 (1999).   DOI