• Title/Summary/Keyword: continuous cultivation

Search Result 308, Processing Time 0.023 seconds

Growth and Yield Characteristics of Foxtail Millet, Proso Millet, Sorghum and Rice in Paddy-Upland Rotation (답전윤환에서의 조, 수수, 기장 및 벼의 생육 및 수량)

  • Yoon, Seong-Tak;Kim, Young-Jung;Jeong, In-Ho;Han, Tae-Kyu;Yu, Je-Bin;Ye, Min-Hee;Cho, Young-Son;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.300-307
    • /
    • 2015
  • In order to develop optimum paddy-upland rotation system, we evaluated the 1st and the 2nd upland growth and yield characteristics of foxtail millet, proso millet, sorghum rotated from paddy field and rice rotated from upland in paddy-upland rotation. Average number of ears per hill was 3.3 in the 2nd upland cultivation. The value was greater by 1 ear as compared to 1st upland cultivation (2.2 ears per hill). In average yield per 10a, the 2nd upland cultivation showed 220.3 kg, 23% increased yield compared to the 1st upland cultivation (179 kg per 10a). In average number of ears per hill, the 2nd upland cultivation showed 8.3 ears, increased 4 ears compared to the 1st upland cultivation (4.2 ears per hill). In average yield per 10a, the 2nd upland cultivation showed 152.8 kg, 16.8% increased yield compared to the 1st upland cultivation (130.8 kg per 10a). In average days from seeding to heading of 5 sorghum varieties, there were no significant difference between the 1st (68.6 days) and the 2nd (67.4 days) upland cultivation rotated from paddy field. In the average number of grains per ears, the 2nd upland cultivation showed 2,931.6 grains per ear, 12% increased compared to the 1st upland cultivation (2,619.6 grains per ears). Average yield per 10a of sorghum in the 2nd upland cultivation showed 242.3 kg, 4.6% increased compared to the 1st upland cultivation (231.7 kg per 10a). In growth and yield characteristics of rice in paddy-upland rotation, culm length in paddy-upland-paddy plot showed 82.9 cm, 7.3 cm longer compared to the continuous rice paddy field (75.6 cm). Ear length was also 1 cm longer than that of the continuous rice paddy field. In average number of ears per hill, paddy-upland-paddy plot showed 25.0 ears, 4.3 ears more than that of the continuous rice paddy field (20.7 ears per hill). In average yield of rice per 10a, the paddy-upland-paddy rotation plot showed 526.8 kg, 9.8% higher yield compared to the continuous rice paddy field (479.9 kg per 10a).

Evaluation of Operating Factors for the Continuous CO2 Fixation with a Photobioreactor (폐탄산가스 고정화를 위한 연속식 광반응기의 운전 인자 평가)

  • Shin, Hang-Sik;Chae, So-Ryong;Jang, Min-Young;Park, Bong-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.71-76
    • /
    • 2000
  • The biological carbon dioxide fixation using microalgae has been known as an effective carbon dioxide reduction technology. With many environmental factors influencing microalgal productivity, the desirable cultivation factors were investigated using a green alga, Euglena gracilis. It has the high protein and vitamin E to be used as fodder. In batch culture with a photobioreactor, initial pH, temperature, carbon dioxide concentration and light intensity in the optimum cultivation condition were 3.5, $27^{\circ}C$,5-10% and $520{\mu}mol/m^2/s$, respectively. After that, the optimum hydraulic retention time (HRT for the continuous cultivation was 4 days at carbon dioxide concentration of 10%. In this condition, the final dry cell weight was 1.2g/l.

  • PDF

Managing Soil Organic Matter and Salinity by Crop Cultivation in Saemangeum Reclaimed Tidal Land

  • Bae, Hui Su;Jang, Hyeonsoo;Hwang, Jae Bok;Park, Tae Seon;Lee, Kyo Suk;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • This study was to evaluate the effect of organic amendments incorporation on soil properties and plant growth under two different soil salinity levels and various cultivated crops at Saemangeum reclaimed tidal land for three years from 2012 to 2014. The soil texture of the experimental site was sandy loam. Four different crops, sesbania (Sesbania grandiflora), sorghum-sudangrass hybrid (Sorghum bicolor-Sorghum sudanense), rice (Oryza sativa L.) and barley (Hordeum vulgare) were cultivated at low (< $1dS\;m^{-1}$) and high (> $4dS\;m^{-1}$) soil salinity levels. The soil salinity was significantly lowered at the rice cultivation site compared to continuous upland crops cultivation site in high soil salinity level. But the soil salinity was increased as cultivating sesbania coutinuously in low soil salinity level. The soil organic matter content was increased with the incorporation of straw at the continuous site of rice and barley, and the average of soil organic matter was increased by $0.9g\;kg^{-1}$ per year which was effective in soil aggregate formation. The highest biomass yield plot was found in barley (high salinity level) and sesbania (low salinity level) cultivation site, respectively. Our research indicates that rice cultivation in paddy field with high salinity level was effective in lowering soil salinity and sesbania cultivation was useful to biomass production at upland with low salinity. In conclusion, soil salinity and organic matter content should be considered for multiple land use in newly reclaimed tidal land.

Wastewater from Instant Noodle Factory as the Whole Nutrients Source for the Microalga Scenedesmus sp. Cultivation

  • Whangchenchom, Worawit;Chiemchaisri, Wilai;Tapaneeyaworawong, Paveena;Powtongsook, Sorawit
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.283-287
    • /
    • 2014
  • Cultivation of microalgae using wastewater exhibits several advantages such as nutrient removal and the production of high valuable products such as lipid and pigments. With this study, two types of wastewater from instant noodle factory; mixed liquor suspended solids (MLSS) and effluents after sedimentation tank were investigated for green microalga Scenedesmus sp. cultivation under laboratory condition. Optimal wastewater dilution percentage was evaluated in 24 wells microplate. MLSS and effluent without dilution showed the highest specific growth rate (${\mu}$) of $1.63{\pm}0.11day^{-1}$ and $1.57{\pm}0.16day^{-1}$, respectively, in which they were significantly (p < 0.05) higher than Scenedesmus sp. grown in BG11 medium ($1.08{\pm}0.14day^{-1}$). Ten days experiment was also conducted using 2000 ml Duran bottle as culture vessel under continuous light at approximately 5000 lux intensity and continuous aeration. It was found that maximum biomass density of microalgae cultivated in MLSS and effluent were $344.16{\pm}105.60mg/L$ and $512.89{\pm}86.93mg/L$ respectively and there was no significant (p < 0.05) difference on growth to control (BG11 medium). Moreover, cultivation microalgae in wastewater could reduce COD in wastewater by 39.89%-73.37%. Therefore, cultivation of Scenedesmus sp. in wastewater from instant noodle factory can yield microalgae biomass production and wastewater reclamation using photobioreactor simultaneously.

Changes of Weed Flora Under Direct Seeded Rice Cultivation in Dry Paddy Field (벼 건답직파재배(乾畓直播栽培)에 따른 잡초군락(雜草群落)의 변화(變化))

  • Ku, Y.C.;Park, K.H.;Oh, Y.J.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.159-163
    • /
    • 1993
  • This research was conducted at the Crop Experiment Station to determine the changes of weed flora under direct seeded rice cultivation in dry paddy field from 1989 to 1992 and to establish an effective weed control strategy in direct seeded rice cultivation. With the continuous rice growing under direct seeded rice cultivation in dry paddy field, there were more occurrence in grasses and annual weeds while broadleaf and perennial weeds were diminished. The predominant weeds were aquatic weeds such as Eleocharis kuroguwai, Echinochloa crusgalli, and Monochoria vaginalis in machine transplanted rice paddy field while there were predominant of semi aquatic weed species such as E. crusgalli, Digitaria sanguinalis, Bidens tripartita, Aeschynomene indica, and Arthraxon hispidus in continuous direct seeded rice cultivation in dry paddy condition. Based on the vegetative analysis of weeds in terms of simpson index and community dominance, there was more distribution of weed species in direct seeded rice cultivation on dry paddy condition while only distributed with 1-2 weed species in machine transplanted rice paddy field. In similarity coefficient, there was a gradual increase up to 67% of weeds with the continuous direct seeded rice cultivation in dry paddy condition for 4 years starting from 41% of similarity coefficient.

  • PDF

Effect of Continuous Treatment of Mixed Organic Fertilizer With Food Waste on the Growth and Yield of Solarium lycopersicum

  • Ho-Jun Gam;Yosep Kang;Eun-Jung Park;Seong-Heon Kim;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.110-110
    • /
    • 2022
  • According to the statistics of the Ministry of Environment, the amount of food waste generated in Korea is 15,903 tons, which accounts for about 30% of the daily household waste. Food waste in Korea is on the rise, and various odors, greenhouse gases, and leachate generated in the process of discharging, transporting, and processing are emerging as social problems. Accordingly, there is a need for a method for recycling food waste. Therefore, this study was carried out to establish an appropriate limiting dose by manufacturing fertilizer mixed with food waste powder and treating it on tomatoes to investigate the growth and yield of crops. The experiment was carried out with continuous cultivation in 2021 (1st year) and 2022 (2nd year), and the treatment groups were set to No Treatment (NT), Chemical Fertilizer (CF), Mixed Fertilizer (MF), and Mixed Fertilizer×2 (MF×2). As a result of the 1st year growth survey, shoot and root length did not show a significant difference between the treatment groups, and the fresh weight showed a significant difference between the MF and MF×2. As a result of the 2nd year growth survey, there was no significant difference in shoot length, root length, and dry weight between the treatment groups, and the fresh weight of the CF was significantly greater than that of the MF×2. The yield of 1st year, MF×2 increased significantly compared to other treatment groups. In the case of 2nd year, CF, and MF×2 show significantly high values compared to NT. Judging from these results, continuous cultivation using food waste powder mixed fertilizer did not have a significant effect on crop growth and yield. However, it is considered that several studies including continuous cultivation experiments are needed to accurately set the appropriate application amount and limit the application amount of the mixed fertilizer for food waste.

  • PDF

Effect of Continuous Biochar Use on Soil Chemical Properties and Greenhouse Gas Emissions in Greenhouse Cultivation (시설재배지에서 바이오차 연용이 토양의 화학적 특성 및 온실가스 배출에 미치는 효과)

  • Jae-Hyuk Park;Dong-Wook Kim;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.435-443
    • /
    • 2023
  • Global concern over climate change, driven by greenhouse gas emissions, has prompted widespread interest in sustainable solutions. In the agricultural sector, biochar has emerged as a focal point for mitigating these emissions. This study investigated the impact of continuous biochar application on CO2 and N2O emissions during the spring cabbage cultivation period. Greenhouse gas emissions in the biochar treatment groups (soils treated with 1, 3, and 5 tons/ha of rice husk biochar) were compared to those in the control group without biochar. During the spring cabbage cultivation period in 2022, the total CO2 emissions were in the range of 71.6-119.0 g/m2 day, and in 2023, with continuous biochar application, they were in the range of 71.6-102.1 g/m2 day. The total emissions of N2O in 2022 and 2023 were in the range of 11.7-23.7 and 7.8-19.9 g/m2 day, respectively. Overall, greenhouse gas emissions decreased after biochar treatment, confirming the positive influence of biochar on mitigating greenhouse gas release from the soil. Nevertheless, further research over an extended period exceeding five years is deemed essential to delve into the specific mechanisms behind these observed changes and to assess the long-term sustainability of biochar's impact on greenhouse gas dynamics in agricultural settings.

Effects of Green Manure Crops and Rotational Cropping System on Growth and Yield of Sesame(Sesamum indicum L.) (참깨의 연작장해 경감 녹비작물 선발 및 윤작효과)

  • Nam, Sang-Young;Kim, In-Jae;Kim, Min-Ja;Kang, Hyo-Jung;Yun, Tae;Rho, Chang-Woo;Min, Kyeong-Beom;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.404-408
    • /
    • 2007
  • The green manure crops such as rye, hairy vetch and scotch oat were applied to reduce the injury by continuous cropping system(CCS) of sesame(Sesamum indicum L.) cultivation, which manure crops was sowed in latter-September or mid-October and returned to soil in the next year of May. The growth and yields were increased as 33%(65.0kg/10a) in the rotational cropping system(RCS) compared to continuous cropping system of 48.9kg/10a. In the CCS of sesame, it was increased as $10{\sim}15%$ in the green manure crop cultivation, and rye cultivation was the most effective crop to reduce the injury of continuous cropping in the green manure crops. The RCS displayed lower disease outbreak and Fussarium oxysporum density in the soil compared with the CCS, and the green manure crop showed good effect in the CCS of sesame. In the RCS, the porosity was most high in the RCS and CCS of rye cultivation, while rye and hairy vetch was effective way to reduce the injury of continuous cropping. The outbreaks of wilt disease and phytophthora blight were increased as the CCS years, however displayed lowest outbreaks of disease and the yields showed highest in the rye cultivation.

Effects of aeration and centrifugation conditions on omega-3 fatty acid production by the mixotrophic dinoflagellate Gymnodinium smaydae in a semi-continuous cultivation system on a pilot scale

  • Ji Hyun You;Hae Jin Jeong;Sang Ah Park;Se Hee Eom;Hee Chang Kang;Jin Hee Ok
    • ALGAE
    • /
    • v.39 no.2
    • /
    • pp.109-127
    • /
    • 2024
  • High production and efficient harvesting of microalgae containing high omega-3 levels are critical concerns for industrial use. Aeration can elevate production of some microalgae by providing CO2 and O2. However, it may lower the production of others by generating shear stress, causing severe cell damage. The mixotrophic dinoflagellate Gymnodinium smaydae is a new, promising microalga for omega-3 fatty acid production owing to its high docosahexaenoic acid content, and determining optimal conditions and methods for high omega-3 fatty acid production and efficient harvest using G. smaydae is crucial for its commercial utilization. Therefore, to determine whether continuous aeration is required, we measured densities of G. smaydae and the dinoflagellate prey Heterocapsa rotundata in a 100-L semi-continuous cultivation system under no aeration and continuous aeration conditions daily for 9 days. Furthermore, to determine the optimal conditions for harvesting through centrifugation, different rotational speeds of the continuous centrifuge and different flow rates of the pump injecting G. smaydae + H. rotundata cells into the centrifuge were tested. Under continuous aeration, G. smaydae production gradually decreased; however, without aeration, the production remained stable. Harvesting efficiency and the dry weights of omega-3 fatty acids of G. smaydae + H. rotundata cells at a rotational speed of 16,000 rpm were significantly higher than those at 2,000-8,000 rpm. However, these parameters did not significantly differ at injection pump flow rates of 1.0-4.0 L min-1. The results of the present study provide a basis for optimized production and harvest conditions for G. smaydae and other microalgae.

Optimization of Substract Concentration in Cell Production of Fungal Chitosan (균류키토산의 균체생산에서 기질농도 최적화에 관한 연구)

  • 김봉섭;서명교;노종수;이용희;이국의
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2003
  • In the process of producing chitosan from crustacean shell, the use of excessive acid and alkli is causing the problems of environmental pollution and of production cost. In this study, one way to solve these problems is to cultivate fungi, then, to extract chitosan from the cell wall. By means of flask incubation and batch cultivation, the optimum cultivation conditions for mass production of continuous cultivation was found. Four strains used for the production of fungal chitosan were Gongronella butleri IF08080, Absidia coerulea IF05301, Rhizopus delemar IF04775, Mucor tuberculisporus IF09256. In flask incubation to select strain of producing much chitosan by means of experiment of the effect of initial pH, Absidia coerulea IFO 5301 had highest yield in FCs, 258.1 $\pm$ 47.3 mg/200 $m\ell$l at pH 6.5. In flask incubation under the optimum cultivation condition, temperature 27$^{\circ}C$, culture time 6days, glucose 2%, peptone 1%, (NH$_4$)$_2$ SO$_4$ 0.5%, $K_2$HPO$_4$ 0.1 %, Nacl 0.1 %, MgSO$_4$ㆍ7$H_2O$ 0.05%, CaCl$_2$ㆍ2$H_2O$ 0.01 %, the yield of DCW brought the highest yields. In batch bioreactor, the optimum cultivation condition was that cell suspended solution was 70 $m\ell$, aeration rate 0.5 l/min, agitation rate 800 rpm, culture time 36 hr. In continuous bioreactor, the optimum substrate flow rate was 4 ι/day.