• Title/Summary/Keyword: continuous contact

Search Result 374, Processing Time 0.028 seconds

A classification of electrical component failures and their human error types in South Korean NPPs during last 10 years

  • Cho, Won Chul;Ahn, Tae Ho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.709-718
    • /
    • 2019
  • The international nuclear industry has undergone a lot of changes since the Fukushima, Chernobyl and TMI nuclear power plant accidents. However, there are still large and small component deficiencies at nuclear power plants in the world. There are many causes of electrical equipment defects. There are also factors that cause component failures due to human errors. This paper analyzed the root causes of failure and types of human error in 300 cases of electrical component failures. We analyzed the operating experience of electrical components by methods of root causes in K-HPES (Korean-version of Human Performance Enhancement System) and by methods of human error types in HuRAM+ (Human error-Related event root cause Analysis Method Plus). As a result of analysis, the most electrical component failures appeared as circuit breakers and emergency generators. The major causes of failure showed deterioration and contact failure of electrical components by human error of operations management. The causes of direct failure were due to aged components. Types of human error affecting the causes of electrical equipment failure are as follows. The human error type group I showed that errors of commission (EOC) were 97%, the human error type group II showed that slip/lapse errors were 74%, and the human error type group III showed that latent errors were 95%. This paper is meaningful in that we have approached the causes of electrical equipment failures from a comprehensive human error perspective and found a countermeasure against the root cause. This study will help human performance enhancement in nuclear power plants. However, this paper has done a lot of research on improving human performance in the maintenance field rather than in the design and construction stages. In the future, continuous research on types of human error and prevention measures in the design and construction sector will be required.

A Study on Fire Prevention Measures through Candle Fire Case and Reproduction Experiment (촛불화재사례 및 재현실험을 통한 화재예방대책 연구)

  • Lee, Jeong-Il;Kim, Young-Soo
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.12-19
    • /
    • 2019
  • Purpose: The purpose of the study is to reduce the fire of the same type by analyzing the form which is mainly generated based on the result of the fire investigation through the experiment to reproduce, since the candle fire is repeated every year with the same type. Methods: For the analysis of candle flame, 4 kinds of methods such as acrylic recharge test, FOMEX acrylic recharge test, general combustible recharge test, and natural fire extinguishing test of candle were conducted. Results: It was confirmed that continuous burning is difficult to be achieved without contact of combustible materials around. Conclusion: In order to prevent a candle fire, it is important to check the safety of the surrounding area. It is also considered to introduce safety regulations such as finishing with a fireproof material such as a silver foil at the terminal end.

Effect of Dewpoints on Annealing Behavior and Coating Characteristics in IF High Strength Steels Containing Si and Mn (Si, Mn함유 IF 고강도강의 소둔거동 및 도금특성에 미치는 이슬점 온도의 영향)

  • Jeon, Sun-Ho;Shin, Kwang-Soo;Sohn, Ho-Sang;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.427-436
    • /
    • 2008
  • The effect of dewpoints on annealing behavior and coating characteristics such as wettability and galvannealing kinetics was studied by annealing 0.3wt%Si - 0.1~0.4wt% Mn added interstitial-free high strength steels(IF-HSS). The 0.3wt%Si-0.1wt%Mn steel exhibited good wettability with molten zinc and galvannealing kinetics after annealing when the dewpoint of $H_2-N_2$ mixed gas was above $-20^{\circ}C$. It is shown that the wettability and galvannealing kinetics are directly related to the coverage of the external(surface) oxide formed by selective oxidation during annealing. At $N_2-15%H_2$ annealing atmosphere, the increase of dewpoint results in a gradual transition from external to internal selective oxidation. The decrease of external oxidation of alloying elements with a concurrent increase of their subsurface enrichment in the substrate, showing a larger surface area that was free of oxide particles, contributed to the improved wettability and galvannealing kinetics. On the other hand, the corresponding wettability and galvannealing kinetics were deteriorated with the dewpoints below $-20^{\circ}C$. The continuous oxide layer of network and/or film type was formed on the steel surface, leading to the poor wettability and galvannealing kinetics. It causes a high contact angle between annealed surface and molten zinc and plays an interrupting role in interdiffusion of Zn and Fe during galvannealing process.

Sleep Monitoring by Contactless in daily life based on Mobile Sensing (모바일 센싱 기반의 일상생활에서 비접촉에 의한 수면 모니터링)

  • Seo, Jung-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.491-498
    • /
    • 2022
  • In our daily life, quality of sleeping is closely related to happiness index. Whether or not people perceive sleep disturbance as a chronic disease, people complain of many difficulties, and in their daily life, they often experience difficulty breathing during sleep. It is very important to automatically recognize breathing-related disorders during a sleep, but it is very difficult in reality. To solve this problem, this paper proposes a mobile-based non-contact sleeping monitoring for health management at home. Respiratory signals during the sleep are collected by using the sound sensor of the smartphone, the characteristics of the signals are extracted, and the frequency, amplitude, respiration rate, and pattern of respiration are analyzed. Although mobile health does not solve all problems, it aims at early detection and continuous management of individual health conditions, and shows the possibility of monitoring physiological data such as respiration during the sleep without additional sensors with a smartphone in the bedroom of an ordinary home.

Microbiological Contamination Assessment of School Cafeterias in the Gyeongnam Area: Investigation of the Status of Hygiene Management since COVID-19 (경남 지역 학교 급식소의 미생물학적 오염도 평가: COVID-19 이후의 위생관리 현황 조사)

  • Son, Yu Jin;Nam, Su Jin;Lee, Seung Hun;Kim, Dong Woo;Shin, Seung Ho;Koo, Ok Kyung
    • Journal of the Korean Dietetic Association
    • /
    • v.28 no.3
    • /
    • pp.205-217
    • /
    • 2022
  • School meals are prepared based using the HACCP system, which is designed to ensure the physical and mental health of students. However, operational recommendations in school cafeterias have changed due to COVID-19 and include delays in serving time to restrict the number of meals and the installation of screens to prevent droplet transmission. Unfortunately, these changes may have detrimentally affected hygiene practices and generated new food poisoning sources. This study aimed to determine the hygiene state of school cafeterias in the Gyeongnam area from December 2020 to September 2021 based on the monitoring of total aerobic and coliform bacteria. Kitchen floors were the most contaminated areas with an average number of total aerobic bacteria of 4.3 log CFU/100 cm2, whereas counts in dining areas were relatively low at 0.1~3.5 log CFU/100 cm2. Newly installed partitioned areas had the lowest contamination level of 0.1~2.8 log CFU/100 cm2. Escherichia coli was not detected on any surface, while coliform was detected on workbenches and floors. In conclusion, hygienic practices appear to have been adequately managed in school cafeterias despite COVID-19 driven changes. Nonetheless, continuous monitoring is recommended to ensure prompt response to changing environments.

Building Bearing Fault Detection Dataset For Smart Manufacturing (스마트 제조를 위한 베어링 결함 예지 정비 데이터셋 구축)

  • Kim, Yun-Su;Bae, Seo-Han;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.488-493
    • /
    • 2022
  • In manufacturing sites, bearing fault in eletrically driven motors cause the entire system to shut down. Stopping the operation of this environment causes huge losses in time and money. The reason of this bearing defects can be various factors such as wear due to continuous contact of rotating elements, excessive load addition, and operating environment. In this paper, a motor driving environment is created which is similar to the domestic manufacturing sites. In addition, based on the established environment, we propose a dataset for bearing fault detection by collecting changes in vibration characteristics that vary depending on normal and defective conditions. The sensor used to collect the vibration characteristics is Microphone G.R.A.S. 40PH-10. We used various machine learning models to build a prototype bearing fault detection system trained on the proposed dataset. As the result, based on the deep neural network model, it shows high accuracy performance of 92.3% in the time domain and 98.3% in the frequency domain.

Detection of Landfast Sea Ice Near Jang Bogo Antarctic Research Station Using Layer-Stacked Sentinel-1 Interferometric SAR Coherence Images (Sentinel-1 영상레이더 간섭 긴밀도 영상의 레이어 병합을 활용한 남극 장보고 과학기지 주변 정착해빙 탐지)

  • Kim, Seung Hee;Han, Hyangsun
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.271-280
    • /
    • 2022
  • Landfast sea ice forms near coastlines in polar regions. Continuous monitoring of this sea ice is important, as it plays a key role in the marine ecosystem and affects the operation of nearby research stations. This study detected landfast sea ice around Jang Bogo research station in East Antarctica by stacking interferometric coherence images of Sentinel-1 synthetic aperture radar (SAR) data with 6-, 12- and 18-day temporal baselines. A total of 50 landfast sea ice maps were generated covering July 2017 to June 2018. The time series revealed regional differences in the timing of the maximum extent as well as growth rate of landfast sea ice. Overall, detecting landfast sea ice using interferometric SAR coherence seems promisingly feasible; however, limitations remain owing to low backscattering coefficients from new and smooth sea ice surfaces and subtle movements of sea ice in contact with the Campbell Glacier Tongue.

Triboelectric Nanogenerator based on Mandarin Peel Powder (감귤 과피 분말 기반 마찰전기 나노발전기 제작)

  • Kim, Woo Joong;Kim, Soo Wan;Park, Sung Hyun;Doh, Yang Hoi;Yang, Young Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.9-15
    • /
    • 2022
  • Discarded bio-wastes, such as seeds and rinds, cause environmental problems. Multiple studies have recycled bio-wastes as eco-friendly energy sources to solve these problems. This study uses bio-waste to fabricate a mandarin peel powder based triboelectric nanogenerator (MPP-TENG). The MPP-TENG is based on the contact separation mode. It generates an open-circuit voltage and short-circuit current of 156V and 2µA, respectively. In addition, MPP-TENG shows stable operation over continuous 3000s without any deviation in output. Also, the device exhibits maximum power density of 5.3㎼/cm2 when connected to a resistance of 100MΩ. In an energy storage capacity test for 1000s, the MPP-TENG stores an energy of 171.6µJ in a 4.7µF capacitor. The MPP-TENG can power 9 blue LEDs and 54 green lettering LEDs. These results confirm that the MPP-TENG can provide a new avenue for eco-friendly energy harvesting device fabrication.

Research Trends of Technology Holding Companies and Suggestions for improving Corporate Performance : Focusing on the introduction of PMO (기술지주회사 연구동향과 기업성과 향상을 위한 제언 : Project Management Office(PMO) 도입을 중심으로)

  • Lee, Kangoh;Lee, Chanho
    • Journal of East Asia Management
    • /
    • v.4 no.1
    • /
    • pp.53-77
    • /
    • 2023
  • Modern company faces an uncertain future and a competitive environment and are seeking new technologies and creative products to ensure the corporate growth and survival in the market through continuous innovation. "University Industry Cooperation(UIC)" is a point of contact for overcoming the crisis faced by companies and universities in this era and a cooperation platform for mutual prosperity. As a subsidiary of a university, "Technology Holding Company(THC)" is attracting attention as a new window for UIC in Korea. The role of THC is to establish and foster the business opportunities of their subsidiaries and to return investment profits to the university ecosystem again. But recently, the life cycle of technology is getting shorter, and the development cost is steadily increasing. In particular, with the increase of hybrid projects based on convergence and combination, the risk of conducting research(R&D) and new product development(NPD) projects is gradually increasing. A PMO refers to a project management organization that can contribute to improving the success rate of projects with increasing uncertainty by supporting project visibility and appropriate decision-making. The purpose of this study is to raise a research question on whether THC's corporate performance can be improved when "Project Management System(PMO Service)" is introduced into the subsidiary incubation system of THC. This study proposes several research methods to identify the relationship between the introduction of PMO and the corporate performance of THC.

3D Modeling based on Digital Topographic Map for Risk Analysis of Crowd Concentration and Selection of High-risk Walking Routes (군중 밀집 위험도 분석과 고위험 보행로 선정을 위한 수치지형도 기반 3D 모델링)

  • Jae Min Lee;Imgyu Kim;Sang Yong Park;Hyuncheol Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.87-95
    • /
    • 2023
  • On October 29, 2022, a very large number of people gathered in Itaewondong, Yongsan-gu, Seoul, Korea for a Halloween festival, and as crowds pushed through narrow alleys, 159 deaths and 195 injuries occurred, making it the largest crushing incident in Korea. There have been a number of stampede deaths where crowds gathered at large-scale festivals, event venues, and stadiums, both at home and abroad. When the density increases, the physical contact between bodies becomes very strong, and crowd turbulence occurs when the force of the crowd is suddenly added from one body to another; thus, the force is amplified and causes the crowd to behave like a mass of fluid. When crowd turbulence occurs, people cannot control themselves and are pushed into he crowd. To prevent a stampede accident, investigation and management of areas expected to be crowded and congested must be systematically conducted, and related ministries and local governments are planning to establish a crowd management system to prepare safety management measures to prevent accidents involving multiple crowds. In this study, based on national data, a continuous digital topographic map is modeled in 3D to analyze the risk of crowding and present a plan for selecting high-risk walking routes. Areas with a high risk of crowding are selected in advance based on various data (numerical data, floating population, and regional data) in a realistic and feasible way, and the analysis is based on the visible results from 3D modeling of the risk area. The study demonstrates that it is possible to prepare measures to prevent cluster accidents that can reflect the characteristics of the region.