• Title/Summary/Keyword: continuity simulation

Search Result 253, Processing Time 0.033 seconds

A design and simulation of a hydraulic control valve in transmission (트랜스 미션에 유압식 콘트롤밸브의 설계와 시뮬레이션)

  • 곽희성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.167-174
    • /
    • 1997
  • In this paper, the mathematical model of the hydraulic control valve is formulated, that is, this dynamic modeling which includes the motion equations and continuity equations can analyze the dynamic characteristics of the hydraulic control valve. The control valve for the transmission has the Over Speed Protection to protect a hydraulic travel motor. Therefore, this simulation shows the over speed protection and researches the main design parameters. The results of the computer simulation were assured through the experiment. From the comparison between both results, it is shown that this simulation program is useful and effective.

  • PDF

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

Simulation of Moving Storm in a Watershed Using A Distributed Model -Model Development- (분포형 모델을 이용한 유역내 이동강우(MOVING STORM)의 유출해석(1) -모델의 개발-)

  • Choe, Gye-Won;Lee, Hui-Seong;An, Sang-Jin
    • Water for future
    • /
    • v.25 no.1
    • /
    • pp.101-110
    • /
    • 1992
  • In this paper for simulating spatially and temporally varied moving storm in a watershed a distributed model was developed. The model is conducted by two major flow simulations which overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation are used in the overland flow simulation. On the other hand, in the channel networks simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction are applied. The finite element formulations were used in the overland flow simulation and the implicit finite difference formulations were used in the channel network simulation. The finite element formulations for the overland flow are analyzed by the Gauss elimination method and the finite difference formulations for the channel network flow are analyzed by the double sweep method having advantages of computational speed and reduced computer storages. Several recurrent coefficient equations for channel network simulation are suggested in the paper.

  • PDF

Effects of Coulomb Gauge Condition and Current Continuity Condition on 3-Dimensional FE Analysis for Eddy Current Problems (3차원 와전류문제의 유한요소해석에서 쿨롱게이지조건과 전류연속조건의 영향)

  • Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.483-491
    • /
    • 2005
  • To solve the 3D eddy current problems by using FE(finite element) method with MVP(magnetic vector potential) and electric scalar potential, Coulomb gauge condition and current continuity condition have to be considered. Coulomb gauge condition enforced on existing FE formulations to insure the uniqueness of MVP looks unnatural and current continuity condition which can be driven from Ampere's law looks unnecessary. So in this paper the effect of two conditions on FE formulations are investigated in order to help to obtain accurate numerical simulation results.

Resource Reservation to Support Service Continuity in OFDMA Systems

  • Lee, Jongchan;Lee, Moonho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4356-4371
    • /
    • 2014
  • When the load in a multi-cell orthogonal frequency division multiple access (OFDMA) system is allowed to excessively increase in face of frequent handover, the cell area becomes smaller than the designed size, and thus continuity of quality of service (QoS) for handover requests cannot be guaranteed. To efficiently support the mobility of a mobile terminal (MT), we should adaptively cope with the resource demand of handover calls. This paper proposes a twofold resource-reservation scheme for OFDMA systems to guarantee continuity of QoS for various mobile multimedia services during MT handover from lightly to heavily loaded cells. Our twofold scheme attempts to guarantee service continuity for handover and to maximize resource allocation efficiency. We performed a simulation to evaluate our scheme in terms of outage probability, handover failure rate, total throughput, and blocking rate.

Computer Simulation of Pt-GaAs Schottky Barrier Diode (Pt-GaAs Schottky Barrier Diode의 Computer Simulation)

  • Yoon, Hyun-Ro;Hong, Bong-Sik
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.101-107
    • /
    • 1990
  • In this work, one-dimensional simulation is carried out for PT-GaAs Schottky barrier diodes with finite difference method. Shockley's semiconductor governing equations: Poisson equation and current continuity equation are discertized, and linearized by Newton-Raphson method. The linear system of equation is solved by Gaussian elimination method until convergence is achieved. The boundary condition for this equation is taken from thermionic emission-diffusion theory. Simulation is done for PT-GaAs epitaxial-layer Schottky barrier diodes. The claculated results of electron and potential distribution are shown. Simulation results show exellent agreement with experiments.

  • PDF

A development of the 3-dimensional stationary drift-diffusion equation solver (3차원 정상상태의 드리프트-확산 방정식의 해석 프로그램 개발)

  • 윤현민;김태한;김대영;김철성
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.8
    • /
    • pp.41-51
    • /
    • 1997
  • The device simulator (BANDIS) which can analyze efficiently the electrical characteristics of the semiconductor devices under the three dimensional stationary conditions on the IBM PC was developed. Poisson, electon and hole continuity equations are discretized y te galerkin method using a tetrahedron as af finite element. The frontal solver which has exquisite data structures and advanced input/output functions is dused for the matrix solver which needs the highest cost in the three dimensional device simulation. The discretization method of the continuity equations used in BANDIS are compared with that of the scharfetter-gummel method used in the commercial three-dimensional device. To verify an accuracy and the efficiency of the discretization method, the simulation results of the PN junction diode and the BJT from BANDIS are compared with those of the commercial three-dimensiional device simulator such as DAVINCI. The maximum relative error within 2% and the average number of iterations needed for the convergence is decreased by more than 20%. The total simulation time of the BJT with 25542 nodes is decreased to about 60% compared with that of DAVINCI.

  • PDF

Speech Enhancement Using Nonnegative Matrix Factorization with Temporal Continuity (시간 연속성을 갖는 비음수 행렬 분해를 이용한 음질 개선)

  • Nam, Seung-Hyon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.240-246
    • /
    • 2015
  • In this paper, speech enhancement using nonnegative matrix factorization with temporal continuity has been addressed. Speech and noise signals are modeled as Possion distributions, and basis vectors and gain vectors of NMF are modeled as Gamma distributions. Temporal continuity of the gain vector is known to be critical to the quality of enhanced speech signals. In this paper, temporal continiuty is implemented by adopting Gamma-Markov chain priors for noise gain vectors during the separation phase. Simulation results show that the Gamma-Markov chain models temporal continuity of noise signals and track changes in noise effectively.

Experiments & numerical analysis of charge accumulation and flat band voltage shifts in irradiated MIS capacitor (放射線이 照射된 MIS capacitor의 電荷 蓄積 및 flat band 전압 이동에 대한 實驗 및 數値的 硏究)

  • 황금주;김홍배;손상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.4
    • /
    • pp.483-489
    • /
    • 1995
  • To investigate the mechanism generated by irradiation in the insulator layer irradiated MIS (Metal - Insulator - Semiconductor) device, the various types of MIS capacitors depending on insulator thickness, insulator types and implanted impurities are fabricated on the P-type wafer. MIS capacitors exposed by 1Mrad Co$^{60}$ .gamma.-ray are measured for flat band voltage and charge density shifts pre- and post-irradiation. The measuring results of post-irradiation show the flat band voltage shifting toward negative direction and charge density increasing regardless of parameters. This results have a good agreement with calculated data by computer simulation. Si$_{3}$N$_{4}$ layers have a good radiation-hardness than SiO$_{2}$ layers compared to the results of post-irradiation. Also, radiation-induced negative trap is discovered in the implanted insulator layer. Using numerical analysis, four continuty equations (conduction-band electrons continuity equation, valence-band holes continuity equation, trapped electrons continuity equation, trapped holes continuity equation) are solved and charge distributions according to the distance and Si-Insulator interface states are investigated.

  • PDF