• Title/Summary/Keyword: context classification

Search Result 336, Processing Time 0.033 seconds

Spatial Typification based on Heat Balance for Improving Thermal Environment in Seoul (열수지를 활용한 서울시 열환경 개선을 위한 공간 유형화)

  • Kwon, You Jin;Ahn, Saekyul;Lee, Dong Kun;Yoon, Eun Joo;Sung, Sunyong;Lee, Kiseung
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.109-126
    • /
    • 2018
  • The purpose of this study is to identify the spatial types for thermal environment improvement considering heat flux and its spatial context through empirical orthodox formulas. First, k-means clustering was used to classify values of three kinds of heat flux - latent, sensible and storage heat. Next, from the k-means clustering, we defined a type of thermal environment (type LHL) where improvement is needed for more comfortable and pleasant thermal environment in the city, among the eight types. Lastly, we compared and analyzed the characteristics of each classified thermal environmental types based on land cover types. From the study, we found that the ratio of impervious surfaces, roads, and buildings of the type LHL is higher than those of the type HLH (relatively thermal comfort environment). In order to improve the thermal environment, the following contents are proposed to urban planners and designers depending on the results of the study. a) Increase the green zone rate by 10% to reduce sensible heat; b) Reduce the percentage of impermeable surfaces and roads by 10% ; c) Latent heat increases when water and green spaces are expanded. This study will help to establish a minimum criterion for a land cover rate for the improvement of the urban thermal environment and a standard index for the thermal environmental improvement can be derived.

The Application of Reconfigurable Software Systems (재구성 가능한 소프트웨어 시스템의 적용)

  • Choi, Hanyong
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.219-224
    • /
    • 2021
  • The convergence of various industries has removed the boundaries of software application fields and reduced the restrictions on convergence fields. Software requirements are diversified and they want to reconfigure software requirements in a fast cycle. Since various changes in requirements have to be accepted technically, research on methodologies and standards to increase the efficiency of software productivity and methods for standardizing and producing software are needed. In this study, we studied how the reusability and complexity of the software asset reconfiguration system appeared according to the developer's characteristics and environment to utilize the assets optimized in previous studies. At this time, we measured how the change in complexity according to the usability and asset composition method that appears according to the developer's characteristics appears, but there is a limit to the collected data, so it is necessary to secure the quality of the measured value through continuous data collection. In addition, an intelligent system application plan is needed to supplement the problem of context classification in the use stage of complex assets.

A Korean nationwide investigation of the national trend of complex regional pain syndrome vis-à-vis age-structural transformations

  • Lee, Joon-Ho;Park, Suyeon;Kim, Jae Heon
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.322-331
    • /
    • 2021
  • Background: The present study employed National Health Insurance Data to explore complex regional pain syndrome (CRPS) updated epidemiology in a Korean context. Methods: A CRPS cohort for the period 2009-2016 was created based on Korean Standard Classification of Diseases codes alongside the national registry. The general CRPS incidence rate and the yearly incidence rate trend for every CRPS type were respectively the primary and secondary outcomes. Among the analyzed risk factors were age, sex, region, and hospital level for the yearly trend of the incidence rate for every CRPS. Statistical analysis was performed via the chi-square test and the linear and logistic linear regression tests. Results: Over the research period, the number of registered patients was 122,210. The general CRPS incidence rate was 15.83 per 100,000, with 19.5 for type 1 and 12.1 for type 2. The condition exhibited a declining trend according to its overall occurrence, particularly in the case of type 2 (P < 0.001). On the other hand, registration was more pervasive among type 1 compared to type 2 patients (61.7% vs. 38.3%), while both types affected female individuals to a greater extent. Regarding age, individuals older than 60 years of age were associated with the highest prevalence in both types, regardless of sex (P < 0.001). Conclusions: CRPS displayed an overall incidence of 15.83 per 100,000 in Korea and a declining trend for every age group which showed a negative association with the aging shift phenomenon.

The Beginning of Decentralization: Seongbuk Village Archive (자치분권의 시작, 성북마을아카이브)

  • Kang, Sungbong
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.1
    • /
    • pp.237-243
    • /
    • 2022
  • Seongbuk Village Archive is a village archive built by Seongbuk-gu Office and Seongbuk Cultural Center to contain the uniqueness and specificity of the region. It is a community archive that preserves the records of the community and a digital archive that builds a database through the digitalization of source data. The management system and home page were established through annual and step-by-step promotion through public-private governance. Seongbuk Village Archive's system is designed to facilitate data accumulation and connection between individual records based on the advanced village record standard classification system. Based on this, Seongbuk Cultural Center tried to produce convergence cultural content by linking records online and off-line. In addition, the composition of items displayed on the website has been diversified to not only preserve records but also produce and utilize content. It is a structure created after contemplating how to show the creation and existence of Seongbuk's historical and cultural resources to users in context. In addition, a richer archive platform was built through various curations and activities of the resident record group.

Fraud detection support vector machines with a functional predictor: application to defective wafer detection problem (불량 웨이퍼 탐지를 위한 함수형 부정 탐지 지지 벡터기계)

  • Park, Minhyoung;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • We call "fruad" the cases that are not frequently occurring but cause significant losses. Fraud detection is commonly encountered in various applications, including wafer production in the semiconductor industry. It is not trivial to directly extend the standard binary classification methods to the fraud detection context because the misclassification cost is much higher than the normal class. In this article, we propose the functional fraud detection support vector machine (F2DSVM) that extends the fraud detection support vector machine (FDSVM) to handle functional covariates. The proposed method seeks a classifier for a function predictor that achieves optimal performance while achieving the desired sensitivity level. F2DSVM, like the conventional SVM, has piece-wise linear solution paths, allowing us to develop an efficient algorithm to recover entire solution paths, resulting in significantly improved computational efficiency. Finally, we apply the proposed F2DSVM to the defective wafer detection problem and assess its potential applicability.

Dual Attention Based Image Pyramid Network for Object Detection

  • Dong, Xiang;Li, Feng;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4439-4455
    • /
    • 2021
  • Compared with two-stage object detection algorithms, one-stage algorithms provide a better trade-off between real-time performance and accuracy. However, these methods treat the intermediate features equally, which lacks the flexibility to emphasize meaningful information for classification and location. Besides, they ignore the interaction of contextual information from different scales, which is important for medium and small objects detection. To tackle these problems, we propose an image pyramid network based on dual attention mechanism (DAIPNet), which builds an image pyramid to enrich the spatial information while emphasizing multi-scale informative features based on dual attention mechanisms for one-stage object detection. Our framework utilizes a pre-trained backbone as standard detection network, where the designed image pyramid network (IPN) is used as auxiliary network to provide complementary information. Here, the dual attention mechanism is composed of the adaptive feature fusion module (AFFM) and the progressive attention fusion module (PAFM). AFFM is designed to automatically pay attention to the feature maps with different importance from the backbone and auxiliary network, while PAFM is utilized to adaptively learn the channel attentive information in the context transfer process. Furthermore, in the IPN, we build an image pyramid to extract scale-wise features from downsampled images of different scales, where the features are further fused at different states to enrich scale-wise information and learn more comprehensive feature representations. Experimental results are shown on MS COCO dataset. Our proposed detector with a 300 × 300 input achieves superior performance of 32.6% mAP on the MS COCO test-dev compared with state-of-the-art methods.

COMPOSITION OF A UNIFIED MODEL ACCORDING TO THE STRUCTURE OF QUALIFICATION TYPES OF LIFELONG EDUCATION PROFESSIONALS FOR THE DISABLED: A BASIC STUDY ON THE ESTABLISHMENT OF A CONVERGENCE MAJOR IN DAEGU UNIVERSITY

  • Kim, Young-Jun;Kim, Wha-Soo;Rhee, Kun-Yong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.40-51
    • /
    • 2021
  • This study was conducted with the aim of constructing a unified model according to the structure of qualification types of lifelong education professionals for the disabled. The research method consisted of procedures in which literature analysis and expert meetings were constructed in connection with each other. The contents of the study were suggested from the classification of qualification types into professional teacher type and coordinator type by focusing on special education and rehabilitation, which are related convergence fields that affect the qualification training of lifelong education professionals for the disabled. The two convergence fields, such as special education and rehabilitation welfare, lead to a separate application base from the perspective of education and welfare for the qualification of lifelong education professionals for the disabled, and finally confusion and conflict in the nature and contents of the curriculum and related services. A dichotomy structure system in which this phenomenon results in a divided type of qualification training for lifelong education professionals with disabilities was composed of several samples. In this regard, the curriculum and related services that can build convergence fields related to lifelong education for the disabled were reflected in the context of priority through the criteria that should be emphasized from the standpoint of the disabled in the overall category of establishing lifelong education support system for the disabled. In addition, by forming four qualification criteria centering on this, the common convergence field was composed of special education, thereby enhancing the aspect of inclusion in the rehabilitation welfare field and specific convergence into lifelong education for the disabled. As a result, the two qualification types were unified.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Proposal for User-Product Attributes to Enhance Chatbot-Based Personalized Fashion Recommendation Service (챗봇 기반의 개인화 패션 추천 서비스 향상을 위한 사용자-제품 속성 제안)

  • Hyosun An;Sunghoon Kim;Yerim Choi
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.50-62
    • /
    • 2023
  • The e-commerce fashion market has experienced a remarkable growth, leading to an overwhelming availability of shared information and numerous choices for users. In light of this, chatbots have emerged as a promising technological solution to enhance personalized services in this context. This study aimed to develop user-product attributes for a chatbot-based personalized fashion recommendation service using big data text mining techniques. To accomplish this, over one million consumer reviews from Coupang, an e-commerce platform, were collected and analyzed using frequency analyses to identify the upper-level attributes of users and products. Attribute terms were then assigned to each user-product attribute, including user body shape (body proportion, BMI), user needs (functional, expressive, aesthetic), user TPO (time, place, occasion), product design elements (fit, color, material, detail), product size (label, measurement), and product care (laundry, maintenance). The classification of user-product attributes was found to be applicable to the knowledge graph of the Conversational Path Reasoning model. A testing environment was established to evaluate the usefulness of attributes based on real e-commerce users and purchased product information. This study is significant in proposing a new research methodology in the field of Fashion Informatics for constructing the knowledge base of a chatbot based on text mining analysis. The proposed research methodology is expected to enhance fashion technology and improve personalized fashion recommendation service and user experience with a chatbot in the e-commerce market.

Alzheimer's Diagnosis and Generation-Based Chatbot Using Hierarchical Attention and Transformer (계층적 어탠션 구조와 트랜스포머를 활용한 알츠하이머 진단과 생성 기반 챗봇)

  • Park, Jun Yeong;Choi, Chang Hwan;Shin, Su Jong;Lee, Jung Jae;Choi, Sang-il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.333-335
    • /
    • 2022
  • 본 논문에서는 기존에 두 가지 모델이 필요했던 작업을 하나의 모델로 처리할 수 있는 자연어 처리 아키텍처를 제안한다. 단일 모델로 알츠하이머 환자의 언어패턴과 대화맥락을 분석하고 두 가지 결과인 환자분류와 챗봇의 대답을 도출한다. 일상생활에서 챗봇으로 환자의 언어특징을 파악한다면 의사는 조기진단을 위해 더 정밀한 진단과 치료를 계획할 수 있다. 제안된 모델은 전문가가 필요했던 질문지법을 대체하는 챗봇 개발에 활용된다. 모델이 수행하는 자연어 처리 작업은 두 가지이다. 첫 번째는 환자가 병을 가졌는지 여부를 확률로 표시하는 '자연어 분류'이고 두 번째는 환자의 대답에 대한 챗봇의 다음 '대답을 생성'하는 것이다. 전반부에서는 셀프어탠션 신경망을 통해 환자 발화 특징인 맥락벡터(context vector)를 추출한다. 이 맥락벡터와 챗봇(전문가, 진행자)의 질문을 함께 인코더에 입력해 질문자와 환자 사이 상호작용 특징을 담은 행렬을 얻는다. 벡터화된 행렬은 환자분류를 위한 확률값이 된다. 행렬을 챗봇(진행자)의 다음 대답과 함께 디코더에 입력해 다음 발화를 생성한다. 이 구조를 DementiaBank의 쿠키도둑묘사 말뭉치로 학습한 결과 인코더와 디코더의 손실함수 값이 유의미하게 줄어들며 수렴하는 양상을 확인할 수 있었다. 이는 알츠하이머병 환자의 발화 언어패턴을 포착하는 것이 향후 해당 병의 조기진단과 종단연구에 기여할 수 있음을 보여준다.

  • PDF