• Title/Summary/Keyword: containment measure

Search Result 38, Processing Time 0.026 seconds

THE BONNESEN-TYPE INEQUALITIES IN A PLANE OF CONSTANT CURVATURE

  • Zhou, Jiazu;Chen, Fangwei
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1363-1372
    • /
    • 2007
  • We investigate the containment measure of one domain to contain in another domain in a plane $X^{\kappa}$ of constant curvature. We obtain some Bonnesen-type inequalities involving the area, length, radius of the inscribed and the circumscribed disc of a domain D in $X^{\kappa}$.

OVERVIEW OF CONTAINMENT FILTERED VENT UNDER SEVERE ACCIDENT CONDITIONS AT WOLSONG NPP UNIT 1

  • Song, Y.M.;Jeong, H.S.;Park, S.Y.;Kim, D.H.;Song, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.597-604
    • /
    • 2013
  • Containment Filtered Vent Systems (CFVSs) have been mainly equipped in nuclear power plants in Europe and Canada for the controlled depressurization of the containment atmosphere under severe accident conditions. This is to keep the containment integrity against overpressure during the course of a severe accident, in which the radioactive gas-steam mixture from the containment is discharged into a system designed to remove the radionuclides. In Korea, a CFVS was first introduced in the Wolsong unit-1 nuclear power plant as a mitigation measure to deal with the threat of over pressurization, following post-Fukushima action items. In this paper, the overall features of a CFVS installation such as risk assessments, an evaluation of the performance requirements, and a determination of the optimal operating strategies are analyzed for the Wolsong unit 1 nuclear power plant using a severe accident analysis computer code, ISAAC.

SOME NEW BONNESEN-STYLE INEQUALITIES

  • Zhou, Jiazu;Xia, Yunwei;Zeng, Chunna
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.421-430
    • /
    • 2011
  • By evaluating the containment measure of one domain to contain another, we will derive some new Bonnesen-type inequalities (Theorem 2) via the method of integral geometry. We obtain Ren's sufficient condition for one domain to contain another domain (Theorem 4). We also obtain some new geometric inequalities. Finally we give a simplified proof of the Bottema's result.

Control of accidental discharge of radioactive materials by filtered containment venting system: A review

  • Bal, Manisha;Jose, Remya Chinnamma;Meikap, B.C.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.931-942
    • /
    • 2019
  • Radioactive materials are released from the molten core into the containment at the time of a severe accident in a nuclear power plant (NPP). Filtered containment venting system is a popular and effective safety measure installed to obstruct the uncontrolled escape of radioactive materials due to the over pressurization of the containment. Different designs of filtered containment venting system (FCVS) are available today, each being the result of extensive research and development varying in one way or the other. This paper gives an elaborate description of the different types of FCVS currently being used, the current usage status in over 17 countries and the legislations regarding it. The recent researches being carried out in this field has also been discussed in detail. This present paper focuses on the critical review of existing FCVS, reports the challenges faced by it and highlights the potential developments to overcome the difficulties.

Design and Test of ElectroMagnetic Acoustic Transducer applicable to Wall-Thinning Inspection of Containment Liner Plates (격납건물 라이너 플레이트 감육 검사를 위한 전자기 초음파 트랜스듀서의 설계 및 성능 평가)

  • Han, Soon Woo;Cho, Seung Hyun;Kang, To;Moon, Seong In
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2019
  • This work proposes a noncontact ultrasonic transducer for detecting wall-thinning of containment liner plates of nuclear power plants by measuring their thickness without physical contact. Because the containment liner plate is designed to prevent atmospheric leakage of radioactive substances under severe nuclear accident, its wall-thinning inspection is important for safety of nuclear power plants. Wall-thinning investigation of containment liner plates have been carried out by measuring their thickness with contact-type ultrasonic thickness gauge by inspectors and needs a lot of time and cost. As an alternative, an electromagnetic acoustic transducer measuring precisely thickness of containment liner plates without any physical contact or couplant was suggested in this research. A transducer generating and measuring shear ultrasonic waves in thickness direction was designed and wave field produced by the transducer was analyzed to verify the design. The working performance of the suggested transducer was tested with carbon steel plate specimens with various thicknesses. The test result shows that the proposed transducer can measure thickness of the specimens precisely without any couplant and implies that swift scanning of wall-thinning of containment liner plates will be possible with the proposed transducer.

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

Evaluation of Contaminant Retardation Capacities of Bank Aquifer Materials (강변 대수층 매질 시료의 오염물질 지연능 평가)

  • Kim, Jae Young;Oh, Dong Ik;Park, Dong Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.62-71
    • /
    • 1999
  • The containment retardation capacities of four different aquifers were evaluated in a preliminary study for development of bank filtration in the Young San river area. $NO_3-N$, $NO_2-N$, $NH_4^+-N$, Fe, Mn, phenol, and chloride were selected as the target contaminants and a nonreactive tracer, respectively. Batch isotherm tests were conducted to measure the partition coefficients of the target contaminants. The mass transport parameters of nonreactive tracer were estimated from column tests. From the results of bath isotherm tests, it was shown that lower stream aquifer materials have greater partition coefficients of $NO_3-N$, $NH_4^+-N$, Mn, and phenol than the upper stream aquifer materials; however, there was no significant position-dependent trend for Fe. All aquifer materials tested have the same range of partition coefficients for $NO_2-N$. Column tests showed that the molecular diffusion of Cl- was much less than the mechanical dispersion; and there was no significant difference between the estimated dispersivities of tested aquifer materials. Consequently, it seems that the difference in the containment retardation capacities between four aquifers tested in this study would primarily result not from hydrodynamic dispersion but from partitioning.

  • PDF

Development of a Convergence Monitoring Method for Cylindrical Structures by Optical Fiber Bragg Grating Sensor (광섬유 FBG센서를 이용한 원주형 구조물의 2차원 상대변위 모니터링기법 개발)

  • Lho, Byeong-Cheol;Kim , Jong-Woo;Kang , Suck-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.160-166
    • /
    • 2006
  • Optical Fiber Bragg Grating sensor has a good performance to measure microscopic displacement which can measure strain of lining concrete and cylindrical structure like high intensity containment building and it can present many advantages like a corrosion resistance from the durability point of view. Then it can measure plane geometrical displacement of cylindrical structures with two-way displacement FBG sensor module. According to the test result, measurement of FBG sensor is better performance than other electric sensor system and 2D-level measurement. As a test result, Resolution of the two-way displacement sensor module with FBG sensors are more 10 times than other LVDT or 2D surveying.

Optimal Selection of Energy System Design Using Fuzzy Framework (모호집합론을 사용한 에너지계통 설계의 최적선택)

  • 김성호;문주현
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.3-8
    • /
    • 1998
  • The present work proposes the potential fuzzy framework, based on fuzzy set theory, for supporting decision-making problems, especially, selection problems of a best design in the area of nuclear energy system. The framework proposed is composed of the hierarchical structure module, the assignment module, the fuzzification module, and the defuzzification module. In the structure module, the relationship among decision objectives, decision criteria, decision sub-criteria, and decision alternatives is hierarchically structured. In the assignment module, linguistic or rank scoring approach can be used to assign subjective and/or vague values to the decision analyst's judgment on decision variables. In the fuzzification module, fuzzy numbers are assigned to these values of decision variables. Using fuzzy arithmetic operations, for each alternative, fuzzy preference index as a fuzzy synthesis measure is obtained. In the defuzzification module, using one of methods ranking fuzzy numbers, these indices are defuzzified to overall utility values as a cardinality measure determining final scores. According these values, alternatives of interest are ranked and an optimal alternative is chosen. To illustrate the applicability of the framework proposed to selection problem, as a case example, the best option choice of four design options under five decision criteria for primary containment wall thickening around large penetrations in an advanced nuclear energy system is studied.

  • PDF