• Title/Summary/Keyword: containment building

Search Result 155, Processing Time 0.023 seconds

Analysis and Improvement of Cooling System for Energy Saving in Data Center Building (데이터센터의 냉방에너지 절감을 위한 냉각시스템 분석 및 개선 방안)

  • Jung, Yong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.314-319
    • /
    • 2011
  • Energy Cost has been rapidly increased with the internal heat gain of data center to keep the temperature condition. But the cooling units for server systems are fully operated to satisfy the indoor temperature condition, it results in the excessive energy consumption. In this study, various cooling systems were studied for data center and cold aisle containment system was proved to be the best solution for server cooling system. Because it protects the cooling zone from the hot aisle space. Effective cooling and prohibition of recirculation air from hot aisle was possible by the cold aisle containment system.

  • PDF

Verification for Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building (원전 격납건물 돔 텐던의 축대칭 근사화에 대한 타당성 고찰)

  • Jeon Se Jin;Chung Chul Hun;Kim Young Jin;Chung Yun Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.81-84
    • /
    • 2004
  • Prestressing tendons in a nuclear containment building dome are non-axisymmetrically arranged in most cases. However, simple axisymmetric modeling of the containment has been often employed in practice, which requires the axisymmetric approximation of the actual tendon arrangements in the dome. A procedure was previously proposed that can implement the actual 3D tendon stiffness and prestressing effect into the axisymmetric model for CANDU type. This paper further verifies and compares some methodologies adopted in the proposed scheme through some numerical examples.

  • PDF

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

Analysis of Construction RCB Exterior Wall Formwork Placing High on Nuclear Power Plant (원자력 발전소 RCB 외벽 거푸집 1단 타설 높이별 시공성 분석)

  • Song, Hyo-Min;Shin, Yoon-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.205-206
    • /
    • 2014
  • It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. The purpose of this study attempts to evaluate the single-stage workability of the system given a change in the height of the setting of RCB exterior wall formwork to be used in nuclear power plant construction. As a result of this study, it is possible height of 3.5m~4m uses formwork when analyzing the construction period and material costs an increase in formwork by concrete lateral pressure, to ensure the workability of the RCB exterior wall formwork. Through this study, I want to provide as basic data for the improvement of workability and RCB shortening the construction period.

  • PDF

Seismic Fragility Analysis of PSC Containment Building by Nonlinear Analysis (비선형 지진해석에 의한 PSC 격납건물의 지진취약도 분석)

  • Choi, In-Kil;Ahn, Seong-Moon;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.63-74
    • /
    • 2006
  • The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP(Nuclear Power Plant) structures and equipments. The seismic fragility analysis gives a realistic seismic capacity excluding the convertism included in the design stage. The conservatism is considered as the probabilistic parameters related to the response and capacity in the seismic fragility analysis. In this study, the displacement based seismic fragility analysis method was proposed based on the nonlinear dynamic analysis results. In this study, the seismic safety of the prestressed concrete containment building of KSNP(Korean Standard Nuclear Power Plant) was evaluated for the scenario earthquakes, neat-fault, far-fault, design earthquake and probability based scenario earthquake, which can be occurred in the NPP sites.

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Screw-Propelled Robot for Detecting Grease Pipe (그리스 충전 덕트 내 탐상을 위한 스크류 추진 로봇)

  • Kim, HoJoong;Kim, Dongseon;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.178-182
    • /
    • 2022
  • Post-tension duct in nuclear reactor containment building is filled with grease to prevent steel strand from corroding. If grease leaks by break of duct, steel strand will corrode and cause problem in building safety. Therefore, grease leak should be checked preventatively. But currently used method is inefficient, since it has to remove grease and strand to check. And other methods for checking post-tension dust are not well-researched. In this paper, we develop screw-propelled robot that can move in grease and detect grease duct directly. Also, we make the test environment that is similar to real post-tension duct of containment building and test robot in that environment to verify that our robot is feasible in the post-tension duct. The robot can move forward and backward in grease duct by twin screw mechanism and has mount for sensors to detect grease leakage and strand corrosion.

The capacity loss of a RCC building under mainshock-aftershock seismic sequences

  • Zhai, Chang-Hai;Zheng, Zhi;Li, Shuang;Pan, Xiaolan
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.295-306
    • /
    • 2018
  • Reinforced concrete containment (RCC) building has long been considered as the last barrier for keeping the radiation from leaking into the environment. It is important to quantify the performance of these structures and facilities considering extreme conditions. However, the preceding research on evaluating nuclear power plant (NPP) structures, particularly considering mainshock-aftershock seismic sequences, is deficient. Therefore, this manuscript serves to investigate the seismic fragility of a typical RCC building subjected to mainshock-aftershock seismic sequences. The implementation of the fragility assessment has been performed based on the incremental dynamic analysis (IDA) method. A lumped mass RCC model considering the tri-linear skeleton curve and the maximum point-oriented hysteretic rule is employed for IDA analyses. The results indicate that the seismic capacity of the RCC building would be overestimated without taking into account the mainshock-aftershock effects. It is also found that the seismic capacity of the RCC building decreases with the increase of the relative intensity of aftershock ground motions to mainshock ground motions. In addition, the effects of artificial mainshock-aftershock ground motions generated from the repeated and randomized approaches and the polarity of the aftershock with respect to the mainshock on the evaluation of the RCC are also researched, respectively.