• Title/Summary/Keyword: container crane

Search Result 428, Processing Time 0.023 seconds

Development of Real-time Remote Detection System for Crane Wire Rope Defect (크레인 와이어 로프의 실신간 원격 결함탐지 시스템 개발)

  • Lee Kwon Soon;Suh Jin Ho;Min Jeong Tak;Lee Young Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • The wire rope of container crane is a important component to container transfer system and is used in a myriad of various applications such as elevator, mine hoist, construction machinery, and so on. If it happen wire rope failures in operating, it may lead to the safety accident and economic loss, which is productivity decline, competitive decline of container terminal, etc. To solve this problem, we developed the active and portable wire rope fault detecting system. The developed system consists of three parts that are the fault detecting, signal processing, and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. Therefore we applied to discrete wavelet transform to extract a signal from noisy data that was used filter. As experimental result, we can reduce the expense for container terminal because of extension of exchange period of wire rope for container crane and this system is possible to apply in several fields to use wire rope.

Deployment of Yard Cranes Considering Storage Plans in Container Terminals (컨테이너 터미널에서 장치계획을 고려한 야드 크레인 배치 문제)

  • Won, Seung-Hwan;Kim, Kap-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.79-90
    • /
    • 2009
  • The main function of a container terminal is to load container freights into vessels and discharge them from vessels. The container terminal needs to utilize its resources effectively in order to improve the productivity of it. This study deals with the deployment model for yard cranes whose type is RMGC (rail mounted gantry crane). We develop a mathematical model for the deployment of yard cranes. The model considers not only the deployment but also the storage plans. It could be divided into two cases according to whether inter-block movements of yard cranes are allowed or not, during the same period Numerical examples are solved and analyzed to validate the model. Then, additional experiments are performed to compare the performance of the model with that of a previous model without the re-deployment of yard cranes.

Sway Control of Container Cranes as an Axially Moving Nonlinear String

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2474-2479
    • /
    • 2005
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving nonlinear string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.765-772
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Evaluation of Operational Rules for Container Terminals Using Simulation Techniques (시뮬레이션 기법을 이용한 컨테이너터미널 운영규칙의 평가)

  • 장성용;이원영
    • Journal of Korea Port Economic Association
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2002
  • This paper deals with the development of a simulation model for the container terminal, which consists of 3 berths, 8 container cranes, and 16 yard blocks with each yard crane and 90 yard trucks in order to evaluate the various operational rules. The proposed operational rules are 3 ship-dispatching rules, 3 berth allocation rules, 2 crane allocation rules, 2 yard allocation rules, and 2 yard truck allocation rules. These rules are simulated using 4 performance measures, such as ship time in the terminal, ship time in the port, the number of ships processed, and the number of containers handled. The simulation result is as follows: 1) there is no difference among 3 ship-dispatching rules, 2) berth allocation rules depend on performance measures, 3) dynamic crane allocation is better than fixed policy, 4) pooling yard allocation is better than short distance yard allocation rules, and 5) fixed yard truck allocation by berth is a little better than pooling policy.

  • PDF

Optimizing Automated Stacking Crane Dispatching Strategy Using an MOEA for an Automated Container Terminal

  • Wu, Jiemin;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.216-217
    • /
    • 2011
  • The problem of automated stacking cranes (ASC) dispatching in container terminals is addressed in this paper. We propose a heuristic-based ASC dispatching approach which adopts multi-criteria decision strategy. By aggregating different criteria the proposed strategy can consider multiple aspects of the dispatching situation and make robust decision in various situations. A multi-objective evolutionary algorithm (MOEA) is adopted to tune the weights associated to each criteria to minimize both the quay crane delay and external truck delay. The proposed approach is validated by comparison with different dispatching heuristics and simulation results obtained confirms its effectiveness.

  • PDF

A Study on the Positioning Devices of the UGC (UGC의 위치측정장치에 관한 연구)

  • 신영재;김두형;박경택;박찬훈;박재룡
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.293-296
    • /
    • 1999
  • In conventional automatic container-terminal, the gantry cranes are operated manually or semi-automatically. But UGC is an unmanned-operated gantry crane and the positioning information for UGC is supplied only by position-measuring devices. In order to enhance the operation efficiency of UGC, it is required that the position-measuring devices have long maintenance period and are not sensitive to the weather and environment condition. And in order to be used practically in container terminal, the cost of position-measuring devices is not higher than currently used measuring devices. In the study, it is discussed the requirements for position-measuring devices in UGC, And it is studied on the measuring devices suitable to UGC. From this study, it is expected that the combination of a rotary encoder and a ferrous metal detector is useful for position-measuring devices in UGC.

  • PDF

Modeling and Anti-sway Control of a Harbor Container Crane (항만 컨테이너 크레인의 모델링과 흔들림 억제 제어 방법)

  • Lim, Chang-Jin;Choi, Chang-Ho;Moon, Sang-Ho;Yang, Byung-Hoon;Kim, Heung-Geun;Choi, Jong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1465-1467
    • /
    • 2005
  • In this paper, the harbor container crane which transports containers between a container ship and trucks in the harbor is modeled. The equation of motion is simplified for control purpose. The pole placement technique is used to control the crane to minimize load swing angle The objective of the control is to transfer the load as quickly as possible, while minimizing the amplitude of swing at the end of transfer. Computer simulations are provided.

  • PDF

Boundary Control of Container Cranes as an Axially Moving String System (축방향으로 이동하는 현의 경계제어)

  • Park, Hahn;Hong, Keum-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.387-392
    • /
    • 2004
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle for systems with changing mass. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

Models for Determining the Size of Import Container Block in Automated Container Terminals (자동화 컨테이너 터미널에서 수입 컨테이너 장치 블록 크기 결정을 위한 모형)

  • Kim, Ki-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.705-710
    • /
    • 2007
  • The productivity of automated container terminals is significantly affected by not only the speed related performances of automated transfer cranes(ATCs) but also the sizes of container blocks. In this paper, it is discussed how to determine the size of import container blocks considering both the container handling times of an ATC and their storage space. Firstly, evaluation models are suggested for the container handling times of an ATC in a typical import container blocks. Secondly, three mathematical formulations are suggested to determine the size of import container blocks. Numerical experiments for the suggested models to determine the size of import container block are provided.