• Title/Summary/Keyword: contact surface element

Search Result 402, Processing Time 0.032 seconds

Contact Fatigue Analysis of White Etching Layer according to Thickness Variation (White etching layer의 두께변화에 따른 접촉피로수명 평가)

  • Seo, Jung-Won;Kwon, Seok-Jin;Jun, Hyun-Ku;Lee, Dong-Hyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.35-41
    • /
    • 2010
  • White Etching Layer(WEL) is a phenomenon that occurs on the surface of rail due to wheel/rail interactions such as excessive braking and acceleration. Rolling Contact Fatigue(RCF) cracks on the surface of rail have been found to be associated with WEL. In this study, we have investigated RCF damages of white etching layer using twin disc testing and fatigue analysis. These tests consist of wheel flat tests and rolling contact fatigue tests. WEL has been simulated by wheel flat test. It has been founded that the WEL with a bright featureless contrast is formed on the surface of specimen by etching. Rolling contact fatigue test was conducted by using flat specimens with the WEL generated by the wheel flat test. It has been observed that two types of cracks occur within the specimen. The contact fatigue test was simulated in 2D elastic-plastic FE simulations. Based on loading cycles obtained from the finite element analysis, the fatigue life analysis according to the thickness variation of WEL was carried out. The longest fatigue life was observed from the thickness of 20um.

Shape Optimization of an Automotive Wheel Bearing Seal Using the Response Surface Method (반응표면법을 사용한 자동차용 휠 베어링 시일의 형상 최적화)

  • Moon, Hyung-Ll;Lm, Jong-Soon;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2010
  • This paper presents the shape optimization process for the automotive wheel bearing seal lip using the finite element method and the response surface method. First, to predict performance of the bearing seal lip, we used the non-linear finite element analysis. And then, we compared the analysis results with the test results to verify the finite element model. The objective function in optimizing process was obtained from results of the mud slurry test, which is one of many tests for evaluating performance of wheel bearing. After the mud slurry test for the four models which have the similar cross-sectional shape, we measured the wear area of the seal lip and the moisture content in grease. The objective function has been chosen by comparing the results of mud slurry test and characteristics of seal lip, such as contact force, contact area, contact pressure, and interference. Finally, within limited design parameters, we suggested the optimized shape of seal lip, which is expected to improve the wear and the sealing effect of it.

Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types (접촉면 처리 방식에 따른 석탑의 내진 특성 평가)

  • Kim, Ho-Soo;Kim, Dong-Kwan;Won, Tae-Ho;Jeon, Geon-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.41-50
    • /
    • 2019
  • The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.

A Hierarchical Contact Searching Algorithm in Sheet Forming Analysis (박판성형공정해석에서의 계층적 접촉탐색 알고리즘 적용)

  • 김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.22-25
    • /
    • 1999
  • A dynamic explicit finite element code for simulating sheet forming processes has been developed The code utilises the discrete Kirchhoff shell element and contact force is treated by a conventional penalty method. In order to reduce the computational cost a new and robust contact searching algorithm has been developed and implemented into the code. in the method a hierarchical structure of tool segments called a tree structure is built for each tool at the initial stage of the analysis Tree is built in a way to divide a trunk to 8 sub-trunk 2 in each direction until the lowest level of the tree(leaf) contains exactly one segment of the tool. In order to have a well-balanced tree each box on each sub level contains one eighth of the segments. Then at each time step contact line from a node comes out of the surface of the tool. Simulation of various sheet forming processes were performed to verify the validity of the developed code with main focus on he usefulness of the developed contact searching algorithm.

  • PDF

A Study on Stress Distribution Using Boundary Element Analysis Due to Surface Coating in Sliding Contact (경계요소법을 이용한 미끄럼 접촉을 받고 있는 코팅층의 응력분포에 관한 연구)

  • Lee, Gang-Yong;Gang, Jin-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.304-311
    • /
    • 2001
  • The present work examines the influence of surface coating on the temperature and the thermo-mechanical stress field produced by friction due to sliding contact. A two-dimensional transient model of a layered medium submitted to a moving heat flux is prsented. A solution technique based on the boundary element method employing the multiregion technique is utilized. Results are presented showing the influence of coating thickness, thermal properties, Peclet number, and mechanical properties. It has been shown that the mechanical properties and thickness of coating have a significant influence on the stress field, even for low temperature increase. The effects of the ratios of shear modulus become more important for low temperature increase than the effects of the ratios of other mechanical properties.

A General Tool Surface Contact Search and its Application to 3-D Deep drawing Process (일반적인 금형면에서의 접촉탐색과 3차원 디프드로잉 성형에의 응용)

  • 서의권;심현보
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.416-424
    • /
    • 1997
  • In the present study, a contact search and check algorithm for general tool surface described by triangular FE patch is proposed. To improve numerical stability, SEAM element using the linear Coons interpolation has been used. To check the proposed algorithm, both clover cup and L-shape cup deep drawing processes are calculated. The computed results shows that the proposed contact algorithm can be successfully applied for sheet metal forming processes with general shaped tools.

  • PDF

Analysis of Rolling Contact Surface on PM-High Speed Steel by X-ray Diffraction (구름접촉을 하는 분말고속도공구강의 X선을 이용한 표면성상해석)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior performance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PH-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on super-saturated carbon in PM-HSS.

Fretting Wear Simulation of Press-Fitted Shaft with Finite Element Analysis and Influence Function Method (유한요소해석과 영향함수법을 이용한 압입축의 프레팅 마모해석)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge were compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

FE-analysis of sheet metal forming processes considering continuous contact treatment (연속접촉처리를 고려한 박판성형공정의 해석)

  • Kim T. S.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.134-137
    • /
    • 2005
  • In this paper, a continuous contact treatment has been considered during FE-analysis of the sheet metal forming processes. Because the simulation is usually performed stepwise, the status of contact can change suddenly. In case of implicit scheme, the increment of punch stroke can be chosen as large value. For exact assessment of contact force and friction force between die and sheet, the continuous contact treatment is proposed. The virtual surface of sheet metal is modeled by NURBS curves or surfaces in order to calculate exact contact area and penetration depth. From the geometrical evaluation of contact behavior, additional contact pressure is imposed to the element. The deformation of bending process and hydroforming process are analyzed based on this scheme.

  • PDF