• Title/Summary/Keyword: contact resistance

Search Result 1,444, Processing Time 0.034 seconds

Fabrication of One-Dimensional Graphene Metal Edge Contact without Graphene Exfoliation

  • Choe, Jeongun;Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.2-371.2
    • /
    • 2016
  • Graphene electronics is one of the promising technologies for the next generation electronic devices due to the outstanding properties such as conductivity, high carrier mobility, mechanical, and optical properties along with extended applications using 2 dimensional heterostructures. However, large contact resistance between metal and graphene is one of the major obstacles for commercial application of graphene electronics. In order to achieve low contact resistance, numerous researches have been conducted such as gentle plasma treatment, ultraviolet ozone (UVO) treatment, annealing treatment, and one-dimensional graphene edge contact. In this report, we suggest a fabrication method of one-dimensional graphene metal edge contact without using graphene exfoliation. Graphene is grown on Cu foil by low pressure chemical vapor deposition. Then, the graphene is transferred on $SiO_2/Si$ wafer. The patterning of graphene channel and metal electrode is done by photolithography. $O_2$ plasma is applied to etch out the exposed graphene and then Ti/Au is deposited. As a result, the one-dimensional edge contact geometry is built between metal and graphene. The contact resistance of the fabricated one-dimensional metal-graphene edge contact is compared with the contact resistance of vertically stacked conventional metal-graphene contact.

  • PDF

Behaviors of turn-to-turn contact resistance (Rc) of various REBCO CC tapes according to applied contact pressure

  • Jeong, Chanhun;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • No-insulation (NI) pancake magnets are fabricated using Rare earth-Barium-Copper Oxide (REBCO) coated conductor (CC) tapes, which enabled a very compact magnet in the aspects of high critical current density ($J_c$) and high mechanical strength by removing insulation and allowing thinner stabilizer. They have also advantages such as self-quench protection. Therefore, it does not need quench detection and protection that can be very challenging in a high critical temperature ($T_c$) superconducting magnet technology. Recently, it was reported that the NI REBCO CC magnets have some drawbacks of long charging time and high field ramp loss which will be a concern in the operation of cryocooled magnets. These issues are related to the turn-to-turn contact resistivity and can be released by managing it. This is also closely related to the activity of reducing the contact joint resistance in the case of CC joints for long length CC fabrication. Therefore, in this study, the turn-to-turn contact resistance ($R_c$) at the CC contact part of differently stabilized CC tapes was measured. The behaviors of $R_c$ at CC contact parts according to the applied contact pressure were investigated. The range of $R_c$ measured for CC tapes adopted will provide fundamental data for design and fabrication of the CC NI coils.

A Study on the Reduction the Thermal Contact Resistances at the Interface Between a Porous Metal Wick and Solid Heating Plate for a Circular Plate LHP (원판형 LHP 증발부의 소결 금속 윅에서의 접촉 저항에 관한 연구)

  • Jo, Jung-Rae;Choi, Jee-Hoon;Sung, Byung-Ho;Ki, Jae-Hyung;Ryoo, Seong-Ryoul;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2357-2362
    • /
    • 2008
  • LHP is different from a conventional heat pipes in design and heat and fluid flow passages. The situations of the former is much complex than the latter. In LHPs, evaporation occurs at the contact interface between the heating plate and the porous wick, so some micro channels machined at the contact interface serve to let the vapor flow out of the evaporator. This complexity of contact geometry was known to cause a high resistance to heat flow. The present work was to study the problem of heat passage across the contact surface for LHPs and determine those values contact resistance. For two cases of contact structures, the thermal contact resistances were examined experimentally, one being obtained through mechanical contact under pressure and the other through sintered bonding. Nickel powder wick and copper plate were used for specimens. The result showed that a substantial reduction of contact resistance of an order of degree could be obtainable by sintered bonding.

  • PDF

A Study on Specific Contact Resistance Reduction of Ni Germanide/P-type Ge Using Terbium Interlayer (Terbium 중간층 적용을 통한 Ni Germanide/P-type Ge의 비접촉저항 감소 연구)

  • Shin, Geon-Ho;Li, Meng;Lee, Jeongchan;Song, Hyeong-Sub;Kim, So-Yeong;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.6-10
    • /
    • 2018
  • Ni germanide (NiGe) is a promising alloy material with small contact resistance at the source/drain (S/D) of Ge MOSFETs. However, it is necessary to reduce the specific contact resistance between NiGe and the doped Ge S/D region in high-performance MOSFETs. In this study, a novel method is proposed to reduce the specific contact resistance between NiGe and p-type Ge (p-Ge) using a Tb interlayer. The specific contact resistance between NiGe and p-Ge was successfully decreased with the introduction of the Tb interlayer. To investigate the mechanism behind the reduction in the specific contact resistance, the elemental distribution and crystalline structure of NiGe were analyzed using secondary ion mass spectroscopy and X-ray diffraction. It is likely that the reduction in specific contact resistance was caused by an increase in the concentration of boron in the space between NiGe and p-Ge due to the influence of the Tb interlayer.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

Analysis of Electrical Characteristics Due to Deterioration of Electromagnetic Contactor (전자접촉기 열화에 따른 전기적 특성 분석)

  • Choi, Sun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.407-412
    • /
    • 2019
  • In this paper, the changes in the electrical characteristics (arc energy, contact resistance, and bouncing phenomenon) due to the deterioration of the contact are analyzed. The results are generally consistent and can be analyzed for contact deterioration. The results of the experiment demonstrate that the arc energy is linearly related to the current when the contact samples and the voltage conditions are the same. The contact resistance varies due to multiple factors, but is generally within a certain range, and the contact deterioration can be determined. Contact stabilization can be detected by the decrease in the bouncing phenomenon due to deterioration (the change of the shape of the contact).

Characteristics of Ni/Ti/Al ohmic contact on Al-implanted 4H-SiC (Al 이온 주입된 p-type 4H-SiC에 형성된 Ni/Ti/Al ohmic contact의 특성)

  • Joo, Sung-Jae;Song, Jae-Yeol;Kang, In-Ho;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.208-209
    • /
    • 2008
  • Ni/Ti/Al multilayer system was tested for low-resistance ohmic contact formation to Al-implanted p-type 4H-SiC. Compared with conventional process using Ni, Ni/Ti/Al contact shows perfect ohmic behavior, and possesses much lower contact resistance of about $2.5\times10^{-4}\Omega{\cdot}cm^2$ after $930^{\circ}C$ RTA, which is about 2 orders of magnitude smaller than that of Ni contact. Contact resistance gradually increased as the RTA temperature was lowered in the range of 840 ~ $930^{\circ}C$, and about $3.4\times10^{-4}\Omega{\cdot}cm^2$ was obtained at the lowest RTA temperature of $840^{\circ}C$. Therefore, it was shown that RTA temperature for ohmic contact formation can be lowered to at least $840^{\circ}C$ without significant compromise of contact resistance.

  • PDF

Reappearance of the Electrical Poor Contact in Connectors by Fretting Wear (프렛팅 마모에 의한 커넥터 단자의 접촉불량 재현)

  • Kim, Seong-Woo;Jung, Won-Wook;Wei, Shin-Hwan;Kim, Hyung-Min;Park, Sung-Bae;Lee, Dong-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1361-1366
    • /
    • 2008
  • Failure mechanism of the poor contact is analyzed on the basis of used connectors and this poor contact of connectors is reappeared by the new forced fretting wear method. As the result of failure analysis and reappearance, fretting wear and corrosion of the contact interface causes the contact resistance degradation and the poor contact of connectors. The amount of degradation depends on the fretting stroke. Changes in contact resistance of static contacts are likely to be small and gradual, while motions of contact interface may result in larger and discontinuous changes in resistance and voltage. This voltage drop by fretting motions is large enough to cause the distortion of sensor signal and mis-working of electric components.

  • PDF

Thermal contact resistance on elastoplastic nanosized contact spots (탄소성접촉면의 나노스케일 열접촉저항)

  • Lee, Sang-Young;Cho, Hyun;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2214-2219
    • /
    • 2008
  • The thermal contact resistance(TCR) of nanosized contact spots has been investigated through a multiscale analysis which considers the resolution of surface topography. A numerical simulation is performed on the finite element model of rough surfaces. Especially, as the contact size decreases below the phonon mean free path, the size dependent thermal conductivity is considered to calculate the TCR. In our earlier model which follows an elastic material, the TCR increases without limits as the number of nanosized contact spots increases in the process of scale variation. However, the elastoplastic contact induces a finite limit of TCR as the scale varies. The results are explained through the plastic behavior of the two contacting models. Furthermore, the effect of air conduction in nanoscale is also investigated.

  • PDF

Prediction on the Wear Resistance of Contact Tips for GMA Welding (GMA용접에서 콘택트팁의 내마모성에 대한 예측)

  • 김남훈;김희진;유회수;고진현
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2004
  • Contact tips are required to have a higher resistance to wear and thus to have an extended life time under the advanced GMAW welding process. Several requirements have been specified and employed by domestic industries for selecting their tips for such a purpose. However no attempt has been made to justify their requirements based on the experimental data of wear resistance or life time of contact tips. In this study, five different contact tips with three different compositions were employed for actual GMA welding up to 4 hours and were evaluated their wear resistance by measuring in every one hour the area of enlarged hole at the exit side. Experimental results clearly showed that the Cr-containing tips strengthened by precipitation hardening have much better resistance to wear than those made by work hardening. It was further noticed that Cr is an excellent alloying element for improving the wear resistance of contact tips only when it is in an properly aged condition. Initial hardness may play some role in the early stage of wear but not in the later stage of welding because the microstructure of tip changes significantly by the prolonged exposure to welding arc heat. Based on these results, critical review has been made on the current requirements employed by domestic industries. Of importance is that a new guideline has been confirmed to be more reasonable.