• Title/Summary/Keyword: contact process

Search Result 2,785, Processing Time 0.028 seconds

Micro/Nano Rheological Characteristics of PMMA in Hot Embossing Process (핫엠보싱 공정에서 PMMA의 마이크로/나노 레올로지 특성)

  • Kim B. H.;Kim K. S.;Ban J. H.;Shin J. K.;Kim H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.259-264
    • /
    • 2004
  • The hot embossing process as a method for the fabrication of polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of polymer film during hot embossing process. As the initial step of quantitating the hot embossing process, simple parametric studies for the embossing conditions have been carried out using high resolution masters which patterned by DRIE process. Under different embossing times and pressures, the viscous flow of PMMA films into micro/nano cavities has been investigated. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM analysis considering micro/nano effect, such as surface tension and contact angle.

  • PDF

Flow Behaviors of Polymers in Micro Hot Embossing Process (미세 핫엠보싱 공정에서 폴리머의 유동특성)

  • Ban Jun Ho;Shin Jai Ku;Kim Byeong Hee;Kim Heon Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.159-164
    • /
    • 2005
  • The Hot Embossing Lithography(HEL) as a method fur the fabrication of the nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of the polymer (PMMA) film during the hot embossing process. To grasp the characteristics of the micro patterning rheology by process parameters (embossing temperature, pressure and time), we have carried out various experiments by using the nickel-coated master fabricated by the deep RIE process and the plasma sputtering. During the hot embossing process, we have observed the characteristics of the viscoelastic behavior of polymer. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM(Finite Difference Method) analysis considering the micro effect, such as a surface tension and a contact angle.

Influence of Process Parameters on the Forming Compatibility in Composite Extrusion Rods (복합압출재료봉의 공정변수가 성형 적합성에 미치는 영향)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. From the simulation results, the sleeve cladding rate at the core/sleeve interface was recorded as a distribution of diameter ratio and interference conditions, which will be useful for the investigations of the bonding process during co-extrusion process. In addition, the results of the co-extrusion, connected with the results of the variations of diameter rate and average contact pressure, demonstrate a good agreement and present the possibility of describing the parameters of the plastic zones in non-uniform deformation of these type of composite materials.

Contact control of a probing manipulator contacting with plastically deformable objects (소성변형가능한 물체와 접촉하는 프로브 매니퓰레이터의 접촉제어)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.221-224
    • /
    • 1996
  • Since impact phenomenon is highly nonlinear, the analysis and control of the contact motion has been a challenging subject. Various researches have been carried out mostly for the contact of a rigid robotic manipulator with a stiff and elastic environment. This paper is motivated by a new contact task: the in-circuit test of a printed circuit board. In this process, high speed contact occurs between a rigid probing manipulator and a plastically deformable work environment. A new dynamic model of the impact controlled probing task has been proposed, considering contact with the plastically deformable object. Approaching velocity conditions to avoid an excess of the allowable penetration depth and control the generated impact force properly are derived from the proposed model. The results of the simulation studies are made for various probing conditions and show the validity of the proposed model.

  • PDF

Ni/Cu Metallization for High Efficiency Silicon Solar Cells (Ni/Cu 전극을 적용한 고효율 실리콘 태양전지의 제작 및 특성 평가)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1352-1355
    • /
    • 2004
  • We have applied front contact metallization of plated nickel and copper for high efficiency passivated emitter rear contact(PERC) solar cell. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. The plating technique is a preferred method for commercial solar cell fabrication because it is a room temperature process with high growth rates and good morphology. In this system, the electroless plated Ni is utilized as the contact to silicon and the plated Cu serves as the primary conductor layer instead of traditional solution that are based on Ti/Pd/Ag contact system. Experimental results are shown for over 20 % PERC cells with the Plated Ni/Cu contact system for good performance at low cost.

A study on the weld nugget formation in resistance spot welding of aluminum alloy (알루미늄 합금의 저항 점 용접시 용접너깃의 형성에 대한 연구)

  • 나석주;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.661-669
    • /
    • 1986
  • In this study, the resistance spot welding process of an aluminum alloy was analyzed through the numerical simulation including the electric contact resistance and the heat generation in the electrode. The finite element model was used to solve the electro-thermal responses in weld cycles. The resistance of the contact area was represented as the contact element modeling, but the thermal resistance between the contact surfaces was neglected. Welding tests of Alclad 2024-T3 aluminum alloy were made not only to get the input data for the numerical simulation, but also to compare the numerical results. The contact resistance was determined initially by the contact resistance tests and assumed to decay exponentially up to the solidus temperature. The temperature distributions and dynamic resistance obtained numerically were in good agreement with the experimental results. Numerical results revealed that nugget growth depends mainly on the heat generated in the workpiece and its contact area. The heat generated in the electrode has, however, only a little effect on the nugget growth, and the heat generation in the electrode-workpiece interface is initially high but decrease repidly.

Adhesion between Carbon Nanotube Arrays with Different Contact Area Measured Using Microactuator (마이크로 구동기를 이용한 탄소나노튜브 어레이의 접촉 면적에 따른 점착력 측정)

  • Choi, Jungwook;Kim, Jongbaeg
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • Adhesion between carbon nanotube (CNT) arrays is measured and characterized for number of different contact areas. The CNT arrays are directly grown on an electrostatic microactuator, and they make contact with each other during the growth process. The pull-out force is precisely applied by the microactuator while the contact status is identified by measuring electrical resistance between the CNT arrays. We have designed different contact areas of 1000, 6000, and 8500 ${\mu}m^2$ between the CNT arrays, and the corresponding adhesion increases from 0.9 to 3.7 ${\mu}N$ as the contact area increases.

Ohmic contact characteristics of polycrystalline 3C-SiC for high-temperature MEMS applications (초고온 MEMS용 다결정 3C-SiC의 Ohmic Contact 특성)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.386-390
    • /
    • 2006
  • This paper describes the ohmic contact formation of polycrystalline 3C-SiC films deposited on thermally grown Si wafers. In this work, a TiW (titanium tungsten) film as a contact material was deposited by RF magnetron sputter and annealed with the vacuum process. The specific contact resistance (${\rho}_{c}$) of the TiW contact was measured by using the C-TLM (circular transmission line method). The contact phase and interfacial reaction between TiW and 3C-SiC at high-temperature as also analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscope). All of the samples didn't show cracks of the TiW film and any interfacial reaction after annealing. Especially, when the sample was annealed at $800^{\circ}$ for 30 min., the lowest contact resistivity of $2.90{\times}10{\Omega}cm^{2}$ was obtained due to the improved interfacial adhesion. Therefore, the good ohmic contact of polycrystalline 3C-SiC films using the TiW film is very suitable for high-temperature MEMS applications.

Variation of Thermal Contact Resistance for a Corroded Plane Interface of Metals (금속의 평면 접촉면에서 표면부식에 의한 열접촉 저항의 변화)

  • Kim, C.J.;Kim, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.256-262
    • /
    • 1991
  • The corrosion effects on thermal contact resistance were experimentally studied for a given contact interface of a couple of metals. 2 cylindrically shaped test pieces, the one was carbon steel whose surface was machined by lathe and the other was stainless steel, ground, were come into contact under pressure, and then submerged to $HNO_3$ gas environment. While the corrosion process was going on, the thermal contact resistance was measured with time. The experiment was performed for 2 cases; 1) Highly compress the test pieces and then bring them to $HNO_3$ gas environment. 2) Anteriorly corrode the interface under low contact pressure and then increase the contact pressure. The results were as follows; In 1st. case of experiment, the thermal contact resistance seemed to be very stable, and showed low values with a tendancy of small decrease with time. But in 2nd. case the resistance was unstable and jumped to a value of 200-250% more then that expected for uncontaminated interface. More over it demonstrated some increase with time.

  • PDF