• 제목/요약/키워드: contact load

검색결과 1,208건 처리시간 0.027초

High-Efficiency Non-contact Power Supply System

  • Zheng, Bin;Kwan, Dae-Hwan;Lee, Dae-Sik
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.233-235
    • /
    • 2005
  • Non-contact power supply (NCPS), as a clean and safe energy supply concept has been applying wildly. Comparing with the conventional transformer the non-contact transformer has a large air gap between the long primary winding and the secondary winding. Due to it, the non-contact transformer has increased leakage inductance and reduced magnetizing inductance. So the high frequency series resonant converter has been widly used on the non-contact power supply system for transferring the primary power to the secondary one, from what a high influence voltage can be gained on the secondry coil even though the large air gap exists. However, it still has the disadvantages of the load sensitive voltage gain characteristics when load is changing. In this paper, we propose a fuzzy logic controller to adjust the frequency of the inverter to track the resonat which is changing when the load is change.

  • PDF

선접촉 베어링면에 형성되는 윤활유막 특성 해석 (An Analysis on the Lubricating Films Formed on the Surfaces of the Line-Contact Bearings)

  • 이영제
    • Tribology and Lubricants
    • /
    • 제10권4호
    • /
    • pp.75-81
    • /
    • 1994
  • In load sharing model, the load is supported by the contacting asperities and the lubricants. The asperity contact area of two sliding surfaces are relatively very small as compared with the apparent contact area. The asperity contact pressure is relatively higher than the lubricant pressure. With the combined effect of asperity and lubricant pressure, the surface roughness and temperature rise must be considered to calculate the lubricant film thickness of the line-contact bearing.

반경하중을 받는 결함 볼베어링의 진동해석에 관한 연구 (A Study on the Vibration Analysis of Multi-components Damaged Ball Bearing under Radial Load)

  • 김영주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.29-42
    • /
    • 1988
  • With the Hertzian contact theory, it is possible to determine the bearing load distributing pattern among the balls and rollers and also variations of the load-displacement relationships for rolling elements contacting raceways according to bearing clearance, load distribution, contact forces and dimensions of bearing components (i.e diameter of raceway and rolling elements), etc. In this paper the calculation theories of contact load and normal approach between two raceways under radial load are reviewed, and compared these calculation results with those of experimental results. A new calculation theory for elastic displacement of outer-race of ball bearing under radial load is developed by authors by application of energy method, which is independent on the effects of roughness, bending or eccentricity of bearing with driving shaft, and is effective in measuring the location of its defect.

  • PDF

자동차 헬리컬기어의 하중전달 특성해석 (Analysis of Load Transmission Characteristics for Automobile Helical Gear)

  • 박찬일;이장무
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.1-9
    • /
    • 1995
  • The purpose of this study is to develop a computer simulation program for analyzing load transmission characteristics of a helical gear system in design stage. In this analysis, the rotational delay, load distribution, root stress, and contact area are investigated. That is, the influence function of deflection is obtained by finite element analysis and the influence function of approach and gear tooth error are considered. Load distribution, rotational delay, and contact area are calculated by solving load-deflection equation which includes these influence functions and tooth error, and the influence function of the bending moment is obtained by finite element analysis. The root stress is calculated by the load distribution and the influence function of the bending moment. The results of the simulation are cross-checked through a specially designed experimental set-up.

  • PDF

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • 한국운동역학회지
    • /
    • 제27권2호
    • /
    • pp.109-116
    • /
    • 2017
  • Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.

전기철도 전차선 접촉력 측정 및 분석시스템 개발 (Development of a Measurement System for Contact Force Analysis of Trolley Line)

  • 김인철;최규형
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.82-87
    • /
    • 2010
  • A measurement system of contact force between overhead contact line and pantograph of train is developed which measures the contact force by using four sets of full-bridge strain gauges instead of load cells and accelerometers. The sensors are installed on the pan head of pantograph and the measured data from the sensors are transmitted to a server system in the train by way of wireless Lan. This configuration of the measuring system makes it easy to install on the trains without any alteration of train system. The measurement system is applied to KTX on the Kyungbu high speed line, and the measured contact force data shows good agreement with those measured by load cell and accelerometers. The waveform of the contact force between overhead contact line and pantograph contains essential information about their conditions. The proposed measurement system can probe any defects on overhead contact lines with train running at high speed, which will be a powerful solution for the maintenance of long-distance overhead contact lines.

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

원자스케일 마찰의 하중 및 강성 의존성 (Load and Stiffness Dependence of Atomistic Sliding Friction)

  • 성인하
    • Tribology and Lubricants
    • /
    • 제23권1호
    • /
    • pp.9-13
    • /
    • 2007
  • Despite numerous researches on atomic-scale friction have been carried out for understanding the origin of friction, lots of questions about sliding friction still remain. It is known that friction at atomic-scale always shows unique phenomena called 'stick-slips' which reflect atomic lattice of a scanned surface. In this work, experimental study on the effects of system stiffnesses and load on the atomic-scale stick-slip friction of graphite was performed by using an Atomic Force Microscope and various cantilevers/tips. The objective of this research is to figure out the dependency of atomic-scale friction on the nanomechanical properties in sliding contact such as load, stiffness and contact materials systematically. From this work, the experimental observation of transitions in atomic-scale friction from smooth sliding to multiple stick-slips in air was first made, according to the lateral cantilever stiffness and applied normal load. The superlubricity of graphite could be verified from friction vs. load experiments. Based on the results, the relationship between the stickslip behaviors and contact stiffness was carefully discussed in this work. The results or this work indicate that the atomic-scale stick-slip behaviors can be controlled by adjusting the system stiffnesses and contact materials.

유한 요소 접촉 해석법에 의한 나사 체결부 설계 개선에 관한 연구 (A parametric study of bolt-nut joints by the method of finite element contact analysis)

  • 이병채;김영곤
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.353-361
    • /
    • 1989
  • 본 논문에서는 유한 요소법을 이용하여 접촉을 고려한 나사 체결 문제를 해석하고 여러 다른 체결조건이 각 나사산에 걸리는 하중 분담율에 미치는 영향을 살펴보고, 이 하중 분담율이 보다 균일화 될 수 있는 체결 조건을 찾고, 또 그때의 응력 분포를 살펴보는 것을 목적으로 한다.

탠덤형 자석 소호기를 사용한 760V급 직류 개폐기의 차단 특성 (760 V-Class DC Switch Breaking Characteristics Using Tandem Type Magnet Extinguisher)

  • 김효성
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.175-179
    • /
    • 2022
  • Magnetic arc extinguishing technology is effective as an extinguishing device for low-voltage direct current (DC) circuit breakers with a resistive load of ≤4 kW. The separation distance between the magnet and the electrical contact must be shortened to increase the magnetic arc extinguishing force. However, if the magnet is installed too close to the electrical contact points, the magnet is exposed to high temperatures due to the arc current generated when the load current is cut off and the magnetism is lost. To solve this problem, the effective magnetic flux density at the electrical contact can be maintained high by placing the arc extinguishing magnet in a tandem structure with the electrical contact point between them, and the proper separation distance between the contact points and the magnet can be maintained. In addition, an electric arc extinguishing technology that emits arc energy using a series circuit of diode and resistor is used to suppress the continuous arc voltage generated by the inductive load. For the proposed circuit breaker, the breaking characteristics are analyzed through the breaking test for the DC load of the 760 V level, the load power of 4 kW, and the time constant of 5 ms, and an appropriate arc extinguishing design guideline is proposed.